Emission Control System

General Information

Description

Emissions control system consists of the three major systems.

- Crankcase Emission Control System prevents blow-by gas from going into the atmosphere. This system burns these gases after moving them to the intake manifold (Closed Crankcase Ventilation Type).
- Evaporative Emission Control System prevents evaporative gas going into the atmosphere. This system burns the gases at appropriate engine operating condition after gathering it in the canister.
- Exhaust Emission Control System converts the three pollutants hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx) into harmless substances by using the 3-way catalytic converter.

Tightening Torques

Itemkgf.mN.mIb-ftPositive Crankcase Ventilation (PCV) Valve installation0.8 ~ 1.27.8 ~ 11.85.8 ~ 8.7

Troubleshooting

Troubleanoothing		
Symptom	Suspect area	
Engine will not start or hard to start	Vapor hose damaged or disconnected	
Engine hard to start	Malfunction of the purge control solenoid valve	
ل تعمير كاران Rough idle or engine stalls	Vapor hose damaged or disconnected	
	Malfunction of the PCV valve	
Rough idle	Malfunction of the evaporative emission control system	
Excessive oil consumption	Positive crankcase ventilation line clogged	

Specifications

Purge Control Solenoid Valve (PCSV)

 \triangleright Specification

Item		Specification
Coil Resistance	1.6 DOHC	16 [20 [°] ℃(68° ^F)]
(Ω)	2.0 DOHC	19.0~22.0 [20°C(68°F)]

General Information

Schematic Diagram

[1.6 DOHC]

STDEC9100L

021 62 99 92 92

EC-4

Emission Control System

STDEC9108L

General Information

Components Location

[1.6 DOHC]

STDEC9101L

- 3. Purge Control Solenoid Valve (PCSV)
- 4. Catalytic Converter (MCC)

021 62 99 92 92

EC-5

WWW.DIGITALKHODRO.COM

1. PCV Valve

2. Canister

021 62 99 92 92

EC-6

Emission Control System

WWW.DIGITALKHODRO.COM

021 62 99 92 92

General Information

[2.0 DOHC]

021 62 99 92 92

STDEC9104L

- 1. PCV Valve
- 2. Canister

- 3. Purge Control Solenoid Valve (PCSV)
- 4. Catalytic Converter (MCC)

EC-8

Emission Control System

1. PCV Valve	2. Canister
PCV Valve	Canister
STDEC9105L	STDEC9102L
3. Purge Control Solenoid Valve (PCSV)	4. Catalytic Converter (MCC)
	Catalytic Converter (MCC)
STDEC9106L	STDEC9107L

Crankcase Emission Control System

Crankcase Emission Control System

Schematic Diagram

[1.6 DOHC]

SHDEC6110L

021 62 99 92 92

021 62 99 92 92

WWW.DIGITALKHODRO.COM

EC-9

EC-10

Emission Control System

[2.0 DOHC]

EERF086Z

Crankcase Emission Control System

Inspection

- 1. After disconnecting the vapor hose from the PCV valve, remove the PCV valve.
- 2. Reconnect the PCV valve to the vapor hose.
- 3. Run the engine at idle, and put a finger on the open end of the PCV valve and make sure that intake manifold vacuum can be felt.

MOTICE

The plunger inside the PCV valve will move back and forth at vacuum.

EC-11

Emission Control System

Positive Crankcase Ventilation (PCV) Valve

Operation Principle

Engine Condition	Not Running	Idling or Decelerating	Normal Operation	Accelerating and High Load
Vacuum in Intake Manifold	0	High	Moderate	Low
PCV Valve	Close	Slightly Open	Properly Open	Fully Open
Blow-by Gas Flow	0	Small	Medium	Large
Schematic Diagram	Intake Manifold	Intake Manifold	Intake Manifold	Intake Manifold

SHDEC8109C

021 62 99 92 92

EC-13

Crankcase Emission Control System

Removal

1. Disconnect the vapor hose (A) and then remove the PCV valve (B).

[1.6 DOHC]

STDEC9109L

[2.0 DOHC]

Inspection

1. Insert a thin stick (A) into the PCV valve (B) from the threaded side to check that the plunger moves.

EEDA010B

MOTICE

If the plunger does not move (PCV valve is clogged), clean or replace the valve.

Installation

1. Installation is reverse of removal.

PCV Valve installation: 7.8 ~ 11.8 N.m (0.8 ~ 1.2 kgf.m, 5.8 ~ 8.7 lb-ft)

WWW.DIGITALKHODRO.COM

Emission Control System

Evaporative Emission Control System

Description

Evaporative Emission Control System prevents fuel vapor stored in fuel tank from vaporizing into the atmosphere. When the fuel evaporates in the fuel tank, the vapor passes through vent hoses or tubes to the canister filled with charcoal and the canister temporarily holds the vapor in the charcoal. If ECM determines to draw the gathered vapor into the combustion chambers during certain operating conditions, it will use vacuum in intake manifold to move it.

Schematic Diagram

SPBEC9110L

Evaporative Emission Control System

Canister

Canister is filled with charcoal and absorbs evaporated vapor in fuel tank. The gathered fuel vapor in canister is drawn into the intake manifold by the ECM/PCM when appropriate conditions are set.

Purge Control Solenoid Valve (PCSV)

Purge Control Solenoid Valve (PCSV) is installed in the passage connecting canister and intake manifold. It is a duty type solenoid valve and is operated by ECM/PCM signal.

To draw the absorbed vapor into the intake manifold, the ECM/PCM will open the PCSV, otherwise the passage remains closed.

Fuel Filler Cap

A ratchet tightening device on the threaded fuel filler cap reduces the chances of incorrect installation, which would seal the fuel filler. After the gasket on the fuel filler cap and the fill neck flange contact each other, the ratchet produces a loud clicking noise indicating the seal has been set.

Inspection

[System Inspection]

- 1. Disconnect the vapor hose from the throttle body and connect a vacuum pump to the nipple on the throttle body.
- 2. Check the following points with applying vacuum using the vacuum pump.

 \cdot At Cold Engine [Engine Coolant Temperature < 60 $^\circ C(140^{\,\circ} F)]$

Engine Operating Condition	Applied Vacuum	Result
ldle	0.5kgf/cm ²	
3,000rpm	(50kPa,7.3psi)	Vacuum is held

· At Warmed Engine [Engine Coolant Temperature > $80^{\circ}(176^{\circ}F)$]

Engine Operating	Applied	Result		-
Condition	Vacuum			
Idle	0.5kgf/cm² (50kPa,7.3psi)	Vacuum is held		
Within 3 minutes after engine start at 3,000 rpm	Try to applyvacu- um	Vacuum is relea- sed	جيت	
In <mark>3 minutes after</mark> engine start at 3, 000 rpm	0.5kgf/cm² (50kPa,7.3psi)	Vacuum will be h- eld momentarily, after which, it will be released	بانه	

Emission Control System

[PCSV Inspection]

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the PCSV connector.
- 3. Disconnect the vapor hose which is connected with the intake manifold from the PCSV.
- 4. After connecting a vacuum pump to the nipple, apply vacuum.
- 5. With the PCSV control line grounded, check valve operation when applying battery voltage to the PCSV or not.

Battery Voltage	Valve	Vacuum
Connected	Open	Released
Disconnected	Close	Maintained

6. Measure the coil resistance of the PCSV.

Specification: 16 Ω [20[°]C (68[°]F)] [1.6 DOHC] 19.0 ~ 22.0 Ω [20[°]C (68[°]F)][2.0 DOHC]

Evaporative Emission Control System

EC-17

Canister

Removal

- 1. Remove the rear seat cushion (Refer to "Seat" in BD group).
- 2. Open the service cover (A).

STDFL9159D

3. Disconnect the vapor hose (A) and the vapor tube quick-connector (B).

After disconnecting the vapor tube quick-connector (B), release the holder (C) because it is fixed with the holder.

STDEC9110L

4. After disconnecting the vapor hose (A), pull the canister (B) in the direction of the end of the vehicle.

STDEC9111L

Inspection

- 1. Check for the following items visually.
 - Cracks or leakage of the canister
 - Loose connection, distortion, or damage of the vapor hose/tube

SHDEC8117C

- A: Canister ↔ Atmosphere (via Fuel Tank Air Filter)
- B: Canister ↔ Fuel Tank
- C: Canister \leftrightarrow Intake Manifold

Installation

Installation is reverse of removal.

Emission Control System

Fuel Filler Cap

Description

A ratchet tightening device on the threaded fuel filler cap reduces the chances of incorrect installation, which would seal the fuel filler. After the gasket on the fuel filler cap and the filler neck flange contact each other, the ratchet produces a loud clicking noise indicating the seal has been set.

LEGE015A

Exhaust Emission Control System

Exhaust Emission Control System

Description

Exhaust emissions (CO, HC, NOx) are controlled by a combination of engine modifications and the addition of special control components.

Modifications to the combustion chamber, intake manifold, camshaft and ignition system form the basic control system.

These items have been integrated into a highly effective system which controls exhaust emissions while maintaining good drivability and fuel economy.

Air/Fuel Mixture Control System [Multiport Fuel Injection (MFI) System]

The MFI system is a system which uses the signals from the heated oxygen sensor to activate and control the injector installed in the manifold for each cylinder, thus precisely regulating the air/fuel mixture ratio and reducing emissions.

This in turn allows the engine to produce exhaust gases of the proper composition to permit the use of a three way catalyst. The three way catalyst is designed to convert the three pollutants (1) hydrocarbons (HC), (2) carbon monoxide (CO), and (3) oxides of nitrogen (NOx) into harmless substances. There are two operating modes in the MFI system.

- 1. Open Loop air/fuel ratio is controlled by information programmed into the ECM.
- 2. Closed Loop air/fuel ratio is adjusted by the ECM based on information supplied by the oxygen sensor.

EC-19

021 62 99 92 92

Emission Control System

Catalytic Converter

Description

The catalytic converter of the gasoline engine is a three way catalyst. It oxidizes carbon monoxide and hydrocarbons (HC), and separates oxygen from the oxides of nitrogen (NOx).

There are two types of three-way catalyst; Palette type and Monolith type.

[2.0 DOHC]

Exhaust Emission Control System

EC-21

021 62 99 92 92

CVVT (Continuously Variable Valve Timing) System

Description

The CVVT (Continuously Variable Valve Timing) which is This CVVT system improves fuel efficiency and reduces installed on the exhaust camshaft controls intake valve NOx emissions at all levels of engine speed, vehicle speed, and engine load by EGR effect because of valve open and close timing in order to improve engine performance. over-lap optimization. The intake valve timing is optimized by CVVT system The CVVT changes the phase of the intake camshaft via depending on engine rpm. oil pressure.

It changes the intake valve timing continuously.

Driving Condition	Intake Valve Timing	Effect
Light load (1)	Retard	Stable combustion
Part load (2)	Advance	Enhanced fuel economy and exhaust emissions
High load& Low rpm (3)	Advance	Enhanced torque
High load& High rpm (4)	Retard	Enhanced Power

LEIF001Q

Operation Principle

The CVVT system makes continuous intake valve timing changes based on operating conditions.

Intake valve timing is optimized to allow the engine to produce maximum power.

Cam angle is advanced to obtain the EGR effect and reduce pumping loss. The intake valve is closed quickly to reduce the entry of the air/fuel mixture into the intake port and improve the changing effect.

Emission Control System

Reduces the cam advance at idle, stabilizes combustion, and reduces engine speed.

If a malfunction occurs, the CVVT system control is disabled and the valve timing is fixed at the fully retarded position.

UEBG014A

Exhaust Emission Control System

- 1. The above figure shows the relative operation structures of the housing vane to the rotor vane.
- 2. If the CVVT is held a certain control angle, to hold this state, oil is replenished as much as oil leaks from the oil pump.

The OCV (CVVT Oil Control Valve) spool location at this time is as follows.

Oil pump \rightarrow Advance oil chamber (Little by little open the inflow side to the advance oil chamber) \rightarrow Almost close the drain side

Be sure there might be a difference in the position according to the engine running state (rpm, oil temperature, and oil pressure).

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

WWW.DIGITALKHODRO.COM

EC-23