FLC-3

General Information

SPECIFICATIONS

FUEL DELIVERY SYSTEM

Items	Specification	
Fuel Injection System	Type Common Rail Direct Injection (CRDI)	
Fuel Return System	Туре	Return type
Fuel Pressure	Max. Pressure 1,600 bar	
Fuel Tank	Capacity	53 lit. (56.0 U.S qt., 46.6 lmp qt.)
Fuel Filter	Туре	High pressure type (Built in engine room)
High Proceure Fuel Dumn	Туре	Mechanical, Plunger Pumping Type
High Pressure Fuel Pump	Driven by	Camshaft
Low Pressure Fuel Pump	Туре	Electrical, in-tank type
	Driven by	Electric motor

SENSORS

MASS AIR FLOW SENSOR (MAFS)

- □ Type: Hot-Film Type
- Specification
- * At intake air temperature = 20°C (68°F)

Frequency (kHz)
1.94 ~ 1.96
1.98 ~ 1.99
2.06 ~ 2.07
2.72 ~ 2.75
3.36 ~ 3.41
4.44 ~ 4.53
7.66 ~ 8.01
10.13 ~ 11.17

* At intake air temperature = -15 $^{\circ}$ C(5 $^{\circ}$ F) or 80 $^{\circ}$ C(176 $^{\circ}$ F)

Air Flow (kg/h)	Frequency (kHz)
10	1.97 ~ 1.99
75	2.71 ~ 2.76
160	3.34 ~ 3.43
310	4.39 ~ 4.58

INTAKE AIR TEMPERATURE SENSOR (IATS) #1 [BUILT IN MAFS]

□ Type: Thermistor type

▷ Specification

Temperature [°C(°F)]	Resistance(^{kΩ})
-40(-40)	35.14 ~ 43.76
-20(-4)	12.66 ~ 15.12
0(32)	5.12 ~ 5.89
20(68)	2.29 ~ 2.55
40(104)	1.10 ~ 1.24
60(140)	0.57 ~ 0.65
80(176)	0.31 ~ 0.37

BOOST PRESSURE SENSOR (BPS)

▷ Specification

Pressure (kPa)	Output Voltage (V)
32.5	0.5
70	1.02 ~ 1.17
140	2.13 ~ 2.28
210	3.25 ~ 3.40
270	4.20 ~ 4.35
284	4.5

Fuel System

INTAKE AIR TEMPERATURE SENSOR (IATS) #2 [BUILT IN BPS]

▷ Specification

Temperature [˚ℂ(˚F)]	Resistance(^{kΩ})
-40(-40)	40.93 ~ 48.35
-20(-4)	13.89 ~ 16.03
0(32)	5.38 ~ 6.09
20(68)	2.31 ~ 2.57
40(104)	1.08 ~ 1.21
60(140)	0.54 ~ 0.62
80(176)	0.29 ~ 0.34

ENGINE COOLANT TEMPERATURE SENSOR (ECTS)

▷ Specification

Temperature [°C(°F)]	Resistance(^{kΩ})	
-40(-40)	48.14	
-20(-4)	14.13 ~ 16.83	
0(32)	5.79	
20(68)	2.31 ~ 2.59	
40(104)	1.15	
60(140)	0.59	
80(176)	0.32	

CAMSHAFT POSITION SENSOR (CMPS)

▷ Specification

Level	Output Pulse (V)
High	12V
Low	0V

Items	Specification
Air Gap	1.0 \pm 0.5 mm

CRANKSHAFT POSITION SENSOR (CKPS)

○ Output Voltage (V): 0 ~ 5V

Items	Specification	
Coil Resistance (Ω))	774 ~ 946Ω [20°C(68°F)]	

ACCELERATOR POSITION SENSOR (APS)

▷ Specification

Toot Condition	Output Voltage(V)	
Test Condition	APS 1	APS 2
ldle	0.7 ~ 0.8	0.275 ~ 0.475
Fully depressed	3.8 ~ 4.4	1.75 ~ 2.35

Itomo	Specification	
Items	APS 1	APS 2
Potentiometer Resistance (k\O)	0.7 ~ 1.3	1.4 ~ 2.6

FUEL TEMPERATURE SENSOR (FTS)

▷ Specification

Temperature [°C(°F)]	Resistance(^{kΩ})
-30(-22)	27.00
-20(-4)	15.00
-10(14)	9.45
0(32)	5.89
20(68)	2.27 ~ 2.73
40(104)	1.17
50(122)	0.83
60(140)	0.60
70(158)	0.43
80(176)	0.30 ~ 0.32

RAIL PRESSURE SENSOR (RPS)

▷ Specification

Test Condition	Rail pressure (bar)	Output Voltage(V)
ldle	220 ~ 320	Below 1.7
Fully depressed	1,800	Approx. 4.5

FLC-5

LAMBDA SENSOR

Specification

λ Value (A/F Ratio)	Pumping Current(A)
0.65	-2.22
0.70	-1.82
0.80	-1.11
0.90	-0.50
1.01	0.00
1.18	0.33
1.43	0.67
1.70	0.94
2.42	1.38
Air (Atmosphere)	2.54

Item	Specification
Heater Resistance (Ω)	2.4 ~ 4.0Ω [20°C (68°F)]

EXHAUST GAS TEMPERATURE SENSOR (EGTS) #1
FOR VGT

□ Type: Thermistor type

▷ Specification

Temperature [°C(°F)]	Resistance(^{kΩ})
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	0.35 ~ 0.38
900(1,652)	0.08 ~ 0.09

EXHAUST GAS TEMPERATURE SENSOR (EGTS) #2 FOR CPF

□ Type: Thermistor type

▷ Specification

Temperature [˚ℂ(˚F)]	Resistance(^{kΩ})
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	0.35 ~ 0.38
900(1,652)	0.08 ~ 0.09

DIFFERENTIAL PRESSURE SENSOR (DPS)

 \triangleright Specification: Vout = (4.5 - 1.0) / 100 * \triangle P + 1.0 (V)

Differential Pressure [△ P] (kPa)	Output Voltage (V)
0	1.00
10	1.35
20	1.70
30	2.05
40	2.40
50	2.75
60	3.10
70	3.45
80	3.80
90	4.15
100	4.50

WATER SENSOR

Specification

Item	Specification
Warning Level (cc)	40 ~ 60

VEHICLE SPEED SENSOR (VSS)

Fuel System

ACTUATORS

INJECTOR

Number: 4

▷ Specification

Items	Specification
Coil Resistance (Ω)	0.33Ω [20°C(68°F)]

FUEL PRESSURE REGULATOR VALVE

▷ Specification

Items	Specification
Coil Resistance (Ω)	2.6 ~ 3.15Ω [20 °C (68° F)]

RAIL PRESSURE REGULATOR VALVE

▷ Specification

Items	Specification
Coil Resistance (Ω)	3.42 ~ 3.78Ω [20°C(68°F)]

THROTTLE CONTROL ACTUATOR

□ Type : Duty control motor type

▷ Specification
 │

Duty (%)	Throttle Valve Position	
5	Open	
5 ~ 94	Normal operation (Partially open in proportion to duty value)	
94 يا 94	Closed النا خودرو	
94 ~ 95	Maintaining the last valid position	
95 ~ 97	Fully closed	

ELECTRIC EGR CONTROL VALVE

▷ Specification

Items	Specification
Coil Resistance (Ω)	7.3 ~ 8.3Ω [20 °C(68°F)]

VGT CONTROL SOLENOID VALVE

▷ Specification

Items	Specification
Coil Resistance (Ω)	14.7 ~ 16.1Ω [20°C(68°F)]

VARIABLE SWIRL CONTROL ACTUATOR

▷ Specification

Motor

Items	Specification
Coil Resistance (Ω)	3.4 ~ 4.4Ω [20 °C (68° F)]

Position Sensor

Items	Specification
Coil Resistance (kΩ)	3.44 ~ 5.16 ^{kΩ} [20°C(68°F)]

FLC-7

SERVICE STANDARD

Basic Idle rpm(After warm u- p) A/C OFF A/C ON		Neutral,N,P-range	850 \pm 100 rpm
		D-range	850 \pm 100 rpm
	A/C ON	Neutral,N,P-range	850 \pm 100 rpm
	A/C ON	D-range	850 \pm 100 rpm

TIGHTENING TORQUES ENGINE CONTROL SYSTEM

Item	Kgf⋅m	N·m	lbf·ft
ECM installation bolts	0.8 ~ 1.2	7.8 ~ 11.8	5.8 ~ 8.7
Mass air flow sensor clamp installation bolts	0.3 ~ 0.5	2.9 ~ 4.9	2.2 ~ 3.6
Boost pressure sensor installation bolts	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Engine coolant temperature sensor installation	2.0 ~ 4.0	19.6 ~ 39.2	14.5 ~ 28.9
Crankshaft position sensor installation bolt	0.4 ~ 0.6	3.9 ~ 5.9	2.9 ~ 4.3
Camshaft position sensor installation bolt	0.4 ~ 0.6	3.9 ~ 5.9	2.9 ~ 4.3
Lambda sensor installation	4.1 ~ 6.1	40.2 ~ 59.8	29.7 ~ 44.1
Electric EGR control valve installation bolts	2.0 ~ 2.7	19.6 ~ 26.5	14.5 ~ 19.5
Variable swirl control actuator installation bolts	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Exhaust gas temperature sensor (For CPF) installation	4.0 ~ 5.0	39.2 ~ 49.1	28.9 ~ 36.2
Exhaust gas temperature sensor (For VGT) installation	4.0 ~ 5.0	39.2 ~ 49.1	28.9 ~ 36.2
DPS & VGT control solenoid valve bracket installation bolts	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Differential pressure sensor installation bolt/nuts	1.0 ~ 1.2	9.8 ~ 11.8	7.8 ~ 8.7
Throttle body installation bolt/nuts	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Oil pressure switch installation	1.5 ~ 2.2	14.7 ~ 21.6	10.9 ~ 15.9
Glow plug installation	1.0 ~ 1.4	9.8 ~ 13.7	7.2 ~ 10.1
Pipe (DPS ↔ CPF) installation (CPF side)	3.5 ~ 5.1	34.3 ~ 50.0	25.3 ~ 36.9

FUEL DELIVERY SYSTEM

Item	Kgf⋅m	N·m	lbf·ft
Injector clamp installation bolt	2.5 ~ 2.9	24.5 ~ 28.4	18.1 ~ 21.0
Common rail installation bolts	2.0 ~ 2.7	19.6 ~ 26.5	14.5 ~ 19.5
High pressure fuel pump installation bolts	2.5 ~ 3.5	24.5 ~ 34.3	18.1 ~ 25.3
High pressure fuel pipe (Injector ↔ Common Rail) installation nuts	2.5 ~ 2.9	24.5 ~ 28.4	18.1 ~ 21.0
High pressure fuel pipe (Common Rail \leftrightarrow High Pressure Fuel Pump) installation nuts	2.5 ~ 2.9	24.5 ~ 28.4	18.1 ~ 21.0
Fuel tank band installation bolts	4.0 ~ 5.5	39.2 ~ 54.0	28.9 ~ 39.8
Fuel pump (Low Pressure) installation bolts	0.2 ~ 0.3	2.0 ~ 2.9	1.4 ~ 2.2
Accelerator pedal module installation bolts	1.3 ~ 1.6	12.8 ~ 15.7	9.4 ~ 11.6

Fuel System

SPECIAL SERVICE TOOLS

Tool (Number and name)	Illustration	Application
09351-4A300 Injector Remover		Removing the injector
09314-27110(14mm) 09314-27120(17mm) Torque Wrench Socket		Installing the high pressure fuel pipe

FLC-9

BASIC TROUBLESHOOTING BASIC TROUBLESHOOTING GUIDE

1 Bring Vehicle to Workshop

2 Analyze Customer's Problem

Ask the customer about the conditions and environment relative to the issue (Use CUSTOMER PROBLEM ANALYSIS SHEET).

3 Verify Symptom, and then Check DTC and Freeze Frame Data

Connect Hi-Scan (Pro) to Diagnostic Link Connector (DLC). Record the DTC and freeze frame data.

To erase DTC and freeze frame data, refer to Step 5.

4 Confirm the Inspection Procedure for the System or Part

Using the SYMPTOM TROUBLESHOOTING GUIDE CHART, choose the correct inspection procedure for the system or part to be checked.

5 Erase the DTC and Freeze Frame Data

NEVER erase DTC and freeze frame data before completing Step 2 MIL/DTC in "CUSTOMER PROBLEM ANALYSIS SHEET".

6 Inspect Vehicle Visually

Go to Step 11, if you recognize the problem.

7 Recreate (Simulate) Symptoms of the DTC

Try to recreate or simulate the symptoms and conditions of the malfunction as described by customer. If DTC(s) is/are displayed, simulate the condition according to troubleshooting procedure for the DTC.

8 Confirm Symptoms of Problem

If DTC(s) is/are not displayed, go to Step 9.

If DTC(s) is/are displayed, go to Step 11.

9 Recreate (Simulate) Symptom

Try to recreate or simulate the condition of the malfunction as described by the customer.

10 Check the DTC

If DTC(s) does(do) not occur, refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE. If DTC(s) occur(s), go to Step 11.

11 Perform troubleshooting procedure for DTC

12 Adjust or repair the vehicle

13 Confirmation test

14 END

LW8F1001

Fuel System

CUSTOMER PROBLEM ANALYSIS SHEET

1. VEHICLEINFORMAITON VIN No. Transmission ☐ M/T ☐ A/T ☐ CVT ☐ etc. Production date Driving type ☐ 2WD (FF) ☐ 2WD (FR) ☐ 4WD Odometer .km/mile ☐ With CPF ☐ Without CPF Reading (Diesel Engine) 2. SYMPTOMS ☐ Engine does not turn over ☐ Incomplete combustion ☐ Unable to start ☐ Initial combustion does not occur ☐ Difficult to start ☐ Engine turns over slowly ☐ Other_ ☐ Rough idling ☐ Incorrect idling □ Poor idling ☐ Unstable idling (High:_____rpm, Low:____rpm) ☐ Other ☐ Soon after starting ☐ After accelerator pedal depressed ☐ After accelerator pedal released ☐ During A/C ON ☐ Engine stall ☐ Shifting from N to D-range ☐ Other_ ☐ Poor driving (Surge) ☐ Knocking ☐ Poor fuel economy □ Others ☐ Back fire ☐ After fire ☐ Other_ **ENVIRONMENT**)
Once only ☐ Constant ☐ Sometimes (_ Problem frequency Weather ☐ Fine ☐ Cloudy ☐ Rainy ☐ Snowy ☐ Other_ °C/°F Outdoor temperature Approx. ☐ Highway ☐ Suburbs ☐ Inner City ☐ Uphill ☐ Downhill Place □ Rough road □ Other_ Engine temperature ☐ Cold ☐ Warming up ☐ After warming up ☐ Any temperature ☐ Starting ☐ Just after starting (____min) ☐ Idling ☐ Racing Engine operation ☐ Driving ☐ Constant speed ☐ Acceleration ☐ Deceleration ☐ A/C switch ON/OFF ☐ Other_ 4. MIL/DTC MIL (Malfunction Indicator ☐ Remains ON ☐ Sometimes lights up ☐ Does not light Lamp) Normal check ☐ Normal ☐ DTC ((Pre-check) ☐ Freeze Frame Data DTC ☐ Normal ☐ DTC (

SFDF28233L

Check mode

5. ECM/PCM INFORMATION

ECM/PCM Part No.

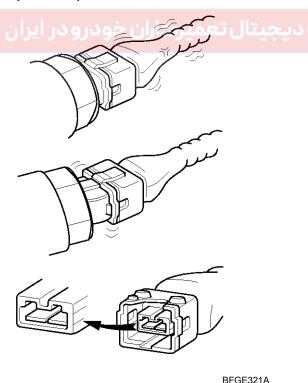
ROM ID

☐ Freeze Frame Data

FLC-11

BASIC INSPECTION PROCEDURE MEASURING CONDITION OF ELECTRONIC PARTS' RESISTANCE

The measured resistance at high temperature after vehicle running may be high or low. So all resistance must be measured at ambient temperature ($20^{\circ}C$, $68^{\circ}F$), unless stated otherwise.


MOTICE

The measured resistance in except for ambient temperature (20°C, 68°F) is reference value.

INTERMITTENT PROBLEM INSPECTION PROCEDURE

Sometimes the most difficult case in troubleshooting is when a problem symptom occurs but does not occur again during testing. An example would be if a problem appears only when the vehicle is cold but has not appeared when warm. In this case, the technician should thoroughly make out a "CUSTOMER PROBLEM ANALYSIS SHEET" and recreate (simulate) the environment and condition which occurred when the vehicle was having the issue.

- 1. Clear Diagnostic Trouble Code (DTC).
- Inspect connector connection, and check terminal for poor connections, loose wires, bent, broken or corroded pins, and then verify that the connectors are always securely fastened.

Slightly shake the connector and wiring harness vertically and horizontally.

- 4. Repair or replace the component that has a problem.
- 5. Verify that the problem has disappeared with the road test.

SIMULATING VIBRATION

- a. Sensors and Actuators
 - : Slightly vibrate sensors, actuators or relays with finger.

WARNING

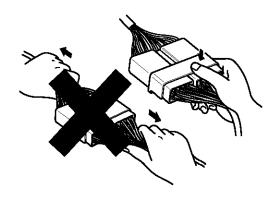
Strong vibration may break sensors, actuators or relays

- b. Connectors and Harness
 - : Lightly shake the connector and wiring harness vertically and then horizontally.
- SIMULATING HEAT
- a. Heat components suspected of causing the malfunction with a hair dryer or other heat source.

WARNING

- DO NOT heat components to the point where they may be damaged.
- DO NOT heat the ECM directly.
- SIMULATING WATER SPRINKLING
- a. Sprinkle water onto vehicle to simulate a rainy day or a high humidity condition.

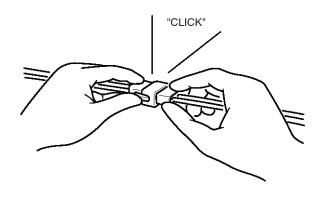
WARNING


DO NOT sprinkle water directly into the engine compartment or electronic components.

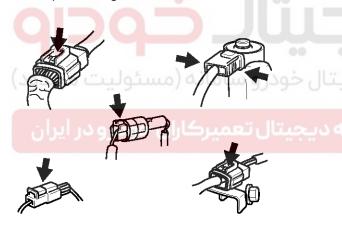
- SIMULATING ELECTRICAL LOAD
- a. Turn on all electrical systems to simulate excessive electrical loads (Radios, fans, lights, rear window defogger, etc.).

Fuel System

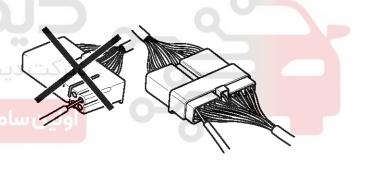
CONNECTOR INSPECTION PROCEDURE


- 1. Handling of Connector
 - a. Never pull on the wiring harness when disconnecting connectors.

BFGE015F

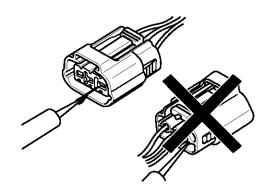

b. When removing the connector with a lock, press or pull locking lever.

c. Listen for a click when locking connectors. This sound indicates that they are securely locked.



BFGE015H

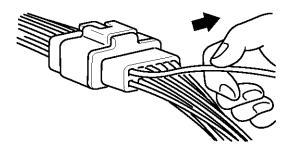
d. When a tester is used to check for continuity, or to measure voltage, always insert tester probe from wire harness side.


BFGE015G

BFGE015I

FLC-13

 e. Check waterproof connector terminals from the connector side. Waterproof connectors cannot be accessed from harness side.


BFGE015J

MNOTICE

- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead.
- 2. Checking Point for Connector
 - a. While the connector is connected:
 Hold the connector, check connecting condition and locking efficiency.
 - b. When the connector is disconnected: Check missed terminal, crimped terminal or broken core wire by slightly pulling the wire harness.

Visually check for rust, contamination, deformation and bend.

- c. Check terminal tightening condition:
 - Insert a spare male terminal into a female terminal, and then check terminal tightening conditions.
- d. Pull lightly on individual wires to ensure that each wire is secured in the terminal.

BFGE015K

- 3. Repair Method of Connector Terminal
 - a. Clean the contact points using air gun and/or shop rag.

MOTICE

Never use sand paper when polishing the contact points, otherwise the contact point may be damaged.

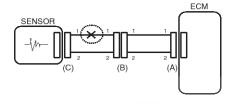
b. In case of abnormal contact pressure, replace the female terminal.

WIRE HARNESS INSPECTION PROCEDURE

- 1. Before removing the wire harness, check the wire harness position and crimping in order to restore it correctly.
- Check whether the wire harness is twisted, pulled or loosened.
- 3. Check whether the temperature of the wire harness is abnormally high.
- 4. Check whether the wire harness is rotating, moving or vibrating against the sharp edge of a part.
- 5. Check the connection between the wire harness and any installed part.
- 6. If the covering of wire harness is damaged; secure, repair or replace the harness.

Fuel System

ELECTRICAL PROCEDURE


CIRCUIT INSPECTION

OCHECK OPEN CIRCUIT

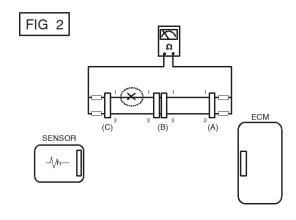
- 1. Procedures for Open Circuit
 - · Continuity Check
 - · Voltage Check

If an open circuit occurs (as seen in [FIG. 1]), it can be found by performing Step 2 (Continuity Check Method) or Step 3 (Voltage Check Method) as shown below.

FIG 1

BFGE501A

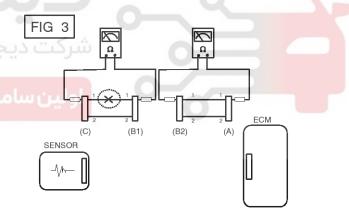
2. Continuity Check Method


MOTICE

When measuring for resistance, lightly shake the wire harness above and below or from side to side.

Specification (Resistance) 1Ω or less \rightarrow Normal Circuit $1^{M\Omega}$ or Higher \rightarrow Open Circuit

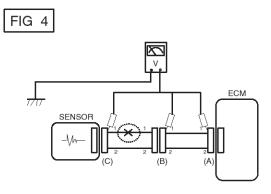
 a. Disconnect connectors (A), (C) and measure resistance between connector (A) and (C) as shown in [FIG. 2].


In [FIG.2.] the measured resistance of line 1 and 2 is higher than $1^{M\Omega}$ and below 1 Ω respectively. Specifically the open circuit is line 1 (Line 2 is normal). To find exact break point, check sub line of line 1 as described in next step.

BFGE501B

b. Disconnect connector (B), and measure for resistance between connector (C) and (B1) and between (B2) and (A) as shown in [FIG. 3].

In this case the measured resistance between connector (C) and (B1) is higher than $1^{M\Omega}$ and the open circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).



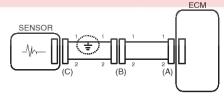
BFGE501C

- 3. Voltage Check Method
 - a. With each connector still connected, measure the voltage between the chassis ground and terminal 1 of each connectors (A), (B) and (C) as shown in [FIG. 4].

FLC-15

The measured voltage of each connector is 5V, 5V and 0V respectively. So the open circuit is between connector (C) and (B).

BFGE501D


CHECK SHORT CIRCUIT

- 1. Test Method for Short to Ground Circuit
 - Continuity Check with Chassis Ground

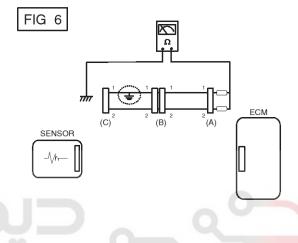
If short to ground circuit occurs as shown in [FIG. 5], the broken point can be found by performing Step 2 (Continuity Check Method with Chassis Ground) as shown below.

دیجیتال تعمیرکاران خودرو در ایران

BFGE501E

2. Continuity Check Method (with Chassis Ground)

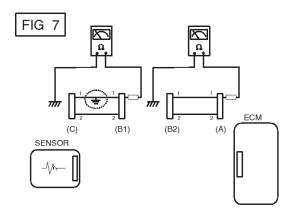
MOTICE


Lightly shake the wire harness above and below, or from side to side when measuring the resistance.

Specification (Resistance) 1Ω or less \rightarrow Short to Ground Circuit

1MΩ or Higher → Normal Circuit

 a. Disconnect connectors (A), (C) and measure for resistance between connector (A) and Chassis Ground as shown in [FIG. 6].


The measured resistance of line 1 and 2 in this example is below 1 Ω and higher than 1M Ω respectively. Specifically the short to ground circuit is line 1 (Line 2 is normal). To find exact broken point, check the sub line of line 1 as described in the following step.

BFGE501F

b. Disconnect connector (B), and measure the resistance between connector (A) and chassis ground, and between (B1) and chassis ground as shown in [FIG. 7].

The measured resistance between connector (B1) and chassis ground is 1Ω or less. The short to ground circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

BFGE501G

Fuel System

SYMPTOM TROUBLESHOOTING GUIDE TABLE (SYMPTOM 1) ENGINE DOES NOT START

Possible Cause

- · Run out of fuel
- Faulty starter
- Not connected fuel feed line
- · Leakage in high pressure fuel circuit
- · Fuse out of order
- Drift of the rail pressure sensor
- · Cam and crank signals missing simultaneously
- Low battery voltage
- · Faulty immobilizer
- Fuel pressure regulator valve contaminated, stuck, jammed
- Rail pressure regulator valve contaminated, stuck, jammed
- Bad fuel quality or water ingress in fuel

- Inversion of fuel connections (feed & return)
- Faulty fuel filter
- Clogged low pressure fuel circuit
- Clogged fuel filter
- · Intermittent faulty fuel line connection
- · Air ingress in the low pressure fuel circuit
- Clogged return line of high pressure fuel pump
- Low compression pressure
- · Leakage at the injector
- Faulty low pressure fuel pump
- Faulty high pressure fuel pump
- Injector jammed open
- · ECM program error or hardware fault
- Faulty glow system

(SYMPTOM 2) ENGINE STARTS WITH DIFFICULTY OR STARTS AND STALLS

- Not connected fuel return line at injector
- Leakage in high pressure fuel circuit
- Fuse out of order
- Clogged air filter
- · Faulty alternator or voltage regulator
- Compensation of individual injector not adapted
- No engine coolant temperature sensor signal
- No rail pressure sensor signal
- · Low battery voltage
- · Electric EGR control valve blocked open
- Fuel pressure regulator valve contaminated, stuck, jammed
- Rail pressure regulator valve contaminated, stuck, jammed
- · Bad fuel quality or water ingress in fuel
- Inversion of fuel connections (feed & return)

- Clogged low pressure fuel circuit
- Clogged fuel filter
- · Oil level too high or too low
- · Sealed or damaged catalytic converter
- Intermittent faulty fuel line connection
- · Air ingress in the low pressure fuel circuit
- Clogged return line of high pressure fuel pump
- Faulty glow system
- · Low compression pressure
- Clogged injector return line
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- Gasoline in fuel
- ECM program error or hardware fault

FLC-17

(SYMPTOM 3) POOR STARTING WHEN HOT

Possible Cause

- Compensation of individual injector not adapted
- No rail pressure sensor signal
- Electric EGR control valve blocked open
- Fuel pressure regulator valve contaminated, stuck, jam-
- Rail pressure regulator valve contaminated, stuck, jammed
- Clogged air filter
- Air ingress in the low pressure fuel circuit
- Bad fuel quality or water ingress in fuel

- Clogged return line of high pressure fuel pump
- Clogged fuel filter
- Low compression pressure
- Intermittent faulty fuel line connection
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- Gasoline in fuel
- ECM program error or hardware fault

(SYMPTOM 4) UNSTABLE IDLING

Possible Cause

- Not connected fuel return line at injector
- Compensation of individual injector not adapted
- No rail pressure sensor signal
- Wiring harness open or poor connection
- Air ingress in the low pressure fuel circuit
- Bad fuel quality or water ingress in fuel
- Clogged fuel filter
- Clogged air filter
- Clogged injector return line
- Leakage in high pressure fuel circuit

- Faulty glow system
- Low compression pressure
- Poor tightening of injector clamp
- Faulty high pressure fuel pump
- Injector not adapted
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- Injector jammed open
- Electric EGR control valve blocked open

(SYMPTOM 5) IDLE SPEED TOO HIGH OR TOO LOW

- No engine coolant temperature sensor signal
- Incorrect state of the electrical pack devices
- Faulty alternator or voltage regulator
- ECM program error or hardware fault

- Electric EGR control valve blocked open
- Faulty accelerator pedal

Fuel System

(SYMPTOM 6) BLUE, WHITE, OR BLACK SMOKES

Possible Cause

- Compensation of individual injector not adapted
- No engine coolant temperature sensor signal
- No rail pressure sensor signal
- Electric EGR control valve blocked open
- · Fuel pressure regulator valve contaminated, stuck, jam-
- Rail pressure regulator valve contaminated, stuck, jammed
- Oil level too high or too low
- Bad fuel quality or water ingress in fuel
- Sealed or damaged catalytic converter

- Clogged air filter
- Oil suction (engine racing)
- Faulty glow system
- Low compression pressure
- Poor tightening of injector clamp
- Poor injector O-ring, no O-ring or two O-ring installed
- Injector not adapted
- Carbon deposit on the injector (sealed holes)
- Injector jammed open
- Gasoline in fuel

(SYMPTOM 7) ENGINE RATTLING, NOISY ENGINE

Possible Cause

- Compensation of individual injector not adapted
- Electric EGR control valve blocked open
- Electric EGR control valve blocked open
- No engine coolant temperature sensor signal
- Faulty glow system
- Low compression pressure
- No rail pressure sensor signal
- Poor injector O-ring, no O-ring or two O-ring installed
- Injector not adapted
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- Injector jammed open
- No engine coolant temperature sensor signal

(SYMPTOM 8) NURST NOISE

Possible Cause

- Compensation of individual injector not adapted
- Intermittent faulty fuel line connection
- Clogged exhaust system
- No rail pressure sensor signal

- Fuel pressure regulator valve contaminated, stuck, jam-
- Rail pressure regulator valve contaminated, stuck, jammed
- ECM program error or hardware fault

(SYMPTOM 9) UNTIMELY ACCELERATION/DECELERATION AND ENGINE RACING

- Blocked accelerator pedal position sensor
- Electric EGR control valve blocked open
- Intermittent faulty fuel line connection

- Oil suction (engine racing)
- No rail pressure sensor signal
- ECM program error or hardware fault

FLC-19

(SYMPTOM 10) GAP WHEN ACCELERATING AND AT RE-COUPLING (RESPONSE TIME)

Possible Cause

- · Leakage in intake system
- · Incorrect state of the electrical pack devices
- · Blocked accelerator pedal position sensor
- · Electric EGR control valve blocked open
- Damaged turbocharger or leakage in vacuum line
- Clogged fuel filter
- · Low compression pressure
- · Leakage in high pressure fuel circuit

- Fuel pressure regulator valve contaminated, stuck, jammed
- Rail pressure regulator valve contaminated, stuck, jammed
- Injector needle stuck (injection possible over a certain pressure)
- · ECM program error or hardware fault

(SYMPTOM 11) ENGINE STOP

Possible Cause

- Run out of fuel
- · Not connected fuel feed line
- Leakage in high pressure fuel circuit
- Fuse out of order
- Bad fuel quality or water ingress in fuel
- Clogged low pressure fuel circuit
- Clogged fuel filter
- Crank signals missing
- Electric EGR control valve blocked open
- Fuel pressure regulator valve contaminated, stuck, jammed
- Rail pressure regulator valve contaminated, stuck, jammed
- Faulty alternator or voltage regulator
- · Intermittent faulty fuel line connection
- Sealed or damaged catalytic converter
- Faulty low pressure fuel pump
- Faulty high pressure fuel pump
- Gasoline in fuel
- ECM program error or hardware fault

(SYMPTOM 12) ENGINE JUDDER

- Run out of fuel
- · Not connected fuel return line at injector
- Incorrect state of the electrical pack devices
- · Compensation of individual injector not adapted
- Electric EGR control valve blocked open
- Faulty fuel filter
- · Air ingress in the low pressure fuel circuit
- · Bad fuel quality or water ingress in fuel
- Clogged fuel filter
- · Intermittent faulty fuel line connection
- Wiring harness open or poor connection
- · Faulty glow system

- Low compression pressure
- Clogged injector return line
- · Poor valve clearance
- Faulty low pressure fuel pump
- Poor injector O-ring, no O-ring or two O-ring installed
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- Injector jammed open
- Gasoline in fuel
- ECM program error or hardware fault

Fuel System

(SYMPTOM 13) LACK OF POWER

Possible Cause

- · Compensation of individual injector not adapted
- Blocked accelerator pedal position sensor
- · Incorrect state of the electrical pack devices
- Electric EGR control valve blocked open
- Leakage in intake system
- · Clogged air filter
- Oil level too high or too low
- Sealed or damaged catalytic converter
- Damaged turbocharger or leakage in vacuum line
- Damaged turbocharger

- Clogged fuel filter
- · Leakage at the injector
- · Clogged return line of high pressure fuel pump
- Clogged injector return line
- · Low compression pressure
- Injector not adapted
- Carbon deposit on the injector (sealed holes)
- · Poor valve clearance
- · Engine coolant temperature too high
- Fuel temperature too high

(SYMPTOM 14) TOO MUCH POWER

Possible Cause

- Compensation of individual injector not adapted
- Oil suction (engine racing)

ECM program error or hardware fault

(SYMPTOM 15) EXCESSIVE FUEL CONSUMPTION

Possible Cause

- Not connected fuel return line at injector
- Leakage at the Fuel pressure regulator valve
- Leakage at fuel temperature sensor
- Leakage in high pressure fuel circuit
- Leakage in intake system
- Clogged air filter
- · Compensation of individual injector not adapted
- Electric EGR control valve blocked open

- Incorrect state of the electrical pack devices
- · Oil level too high or too low
- Bad fuel quality or water ingress in fuel
- Sealed or damaged catalytic converter
- Damaged turbocharger
- Low compression pressure
- · Injector not adapted
- ECM program error or hardware fault

(SYMPTOM 16) OVER SPEED ENGINE WHEN CHANGING THE GEAR BOX RATIO

- Blocked accelerator pedal position sensor
- Compensation of individual injector not adapted
- · Intermittent faulty fuel line connection
- · Clutch not well set (optional)

- Oil suction (engine racing)
- Damaged turbocharger
- Injector not adapted
- ECM program error or hardware fault

FLC-21

(SYMPTOM 17) EXHAUST SMELLS

Possible Cause

- Leakage at electric EGR control valve
- Oil suction (engine racing)
- · Damaged turbocharger
- · Oil level too high or too low
- · Compensation of individual injector not adapted
- Sealed or damaged catalytic converter
- Poor tightening of injector clamp

- Poor injector O-ring, no O-ring or two O-ring installed
- · Injector not adapted
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- · Injector jammed open
- ECM program error or hardware fault

(SYMPTOM 18) SMOKES (BLACK, WHITE, BLUE) WHEN ACCELERATING

Possible Cause

- Compensation of individual injector not adapted
- · Electric EGR control valve blocked open
- Clogged air filter
- Bad fuel quality or water ingress in fuel
- Oil level too high or too low
- · Damaged turbocharger
- Sealed or damaged catalytic converter
- Oil suction (engine racing)
- Faulty air heater
- Low compression pressure
- Leakage in high pressure fuel circuit

- · Intermittent faulty fuel line connection
- · Poor tightening of injector clamp
- · Poor injector O-ring, no O-ring or two O-ring installed
- Injector not adapted
- Carbon deposit on the injector (sealed holes)
- Injector needle stuck (injection possible over a certain pressure)
- · Injector jammed open
- Gasoline in fuel
- · ECM program error or hardware fault
- · Catalyzed Particulate Filter (CPF) fail

(SYMPTOM 19) FUEL SMELLS

Possible Cause

- Not connected fuel feed line
- · Not connected fuel return line at injector
- · Leakage at the Fuel pressure regulator valve
- Leakage at fuel temperature sensor
- Leakage in high pressure fuel circuit

(SYMPTOM 20) THE ENGINE COLLAPSES AT TAKE OFF

- Blocked accelerator pedal position sensor
- Incorrect state of the electrical pack devices
- Clogged air filter
- Inversion of fuel connections (feed & return)
- · Faulty fuel filter
- · Bad fuel quality or water ingress in fuel
- · Air ingress in the low pressure fuel circuit
- · Clogged fuel filter
- Sealed or damaged catalytic converter

- · Intermittent faulty fuel line connection
- No rail pressure sensor signal
- Fuel pressure regulator valve contaminated, stuck, jammed
- Rail pressure regulator valve contaminated, stuck, jammed
- · Gasoline in fuel
- ECM program error or hardware fault
- · Faulty accelerator pedal position sensor

Fuel System

(SYMPTOM 21) ENGINE DOES NOT STOP

	Possible Cause		
•	Stuck or worn lubrication circuit of turbocharger Too much engine oil	•	Leakage at vacuum hose ECM program error or hardware fault

(SYMPTOM 22) DIFFERENT MECHANICAL NOISES

Possible Cause		
 Buzzer noise (discharge by the injectors) Broken clip (vibrations, resonance, noises) Incorrect state of the electrical pack devices Sealed or damaged catalytic converter 	 Leakage in intake system Poor tightening of injector clamp Damaged turbocharger Poor valve clearance 	

FLC-23

Engine Control System

DESCRIPTION

If the disel control system components (sensors, ECM, injector, etc.) fail, interruption to the fuel supply or failure to supply the proper amount of fuel for variousengine operating conditions will result. The following situations may be encountered

- 1. Engine is hard to start or does not start at all.
- 2. Nstable idle.
- 3. Poor driveability.

If any of the above conditions are noted, first perform a routine diagnosis that includes basic engine checks (ignition system malfunction, incorrectengine adjustment, etc.). Then, inspect the disel contorl system components with a scan tool.

MNOTICE

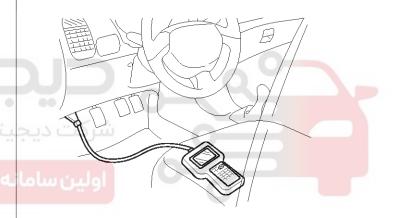
- Before removing or installing any part, read the diagnostic trouble codesand then disconnect the battery negative (-) terminal.
- Before disconnecting the cable from battery terminal, turn the ignition switch to OFF. Removal or connection of the battery cable during engine operationor while the ignition switch is ON could cause damage to the ECM.
- Wchecking the generator for the charging state, do not disconnect the battery '+' terminal to prevent the ECM from damage due to the voltage.
- Wcharging the battery with the external charger, disconnect the vehicleside battery terminals to prevent damage to the ECM.

SELF-DIAGNOSIS

The ECM monitors the input/output signals (some signals at all times and theothers under specified conditions). When the ECM detects an irregularity, it records the diagnostic trouble code, and outputs the signal to the Data Link connector. The diagnosis results can be read with the MIL or scan tool. Diagnostic Trouble Code(DTC) will remain in the ECM and may be deleted by the scan tool.

UNOTICE

If a sensor connector is disconnected with the ignition switch turned on, the diagnostic trouble code (DTC) is recorded. In this case, disconnect the battery negative terminal (-) for 15 seconds or more, and the diagnosis memory will be erased.


CHECKING PROCEDURE (SELF-DIAGNOSIS)

MOTICE

- When attery voltage is excessively low, diagnostic trouble codes can not be read. Be sure to check the battery for voltage and the charging system before starting the test
- Diagnosis memory is erased if the battery or the ECM connector is disconnected. Do not disconnect the battery before the diagnostic trouble codes are completely read and recorded.

INSPECTION PROCEDURE (USING GENERIC SCAN TOOL)

- 1. Turn OFF the ignition switch.
- 2. Connect the scan tool to the data link connector on the lower crash pad.

AWJF300D

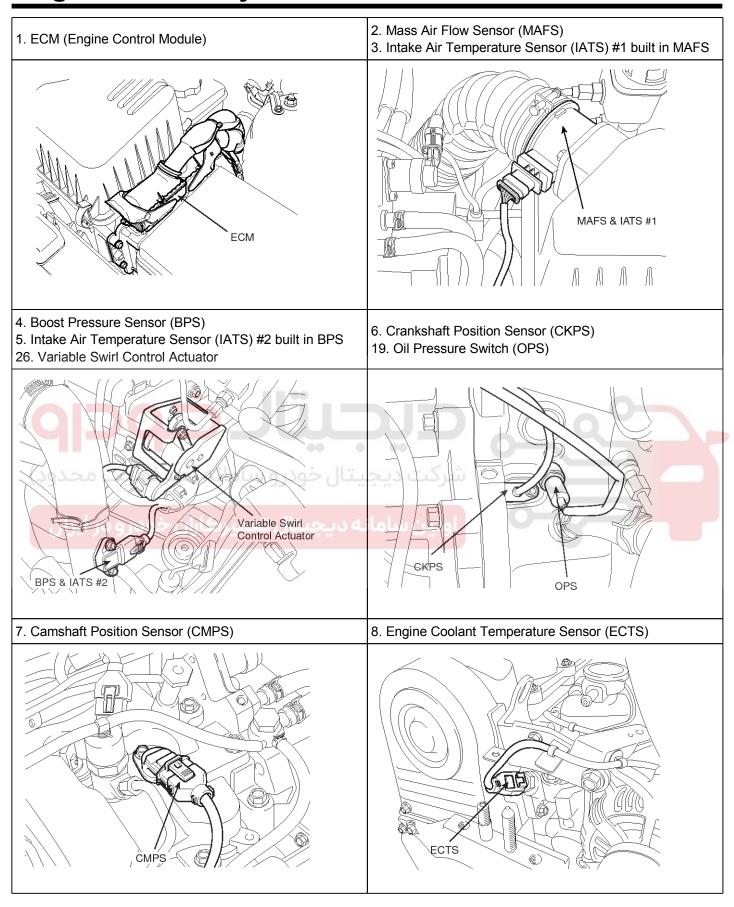

- 3. Turn ON the ignition switch.
- 4. Use the scan tool to check the diagnostic trouble code.
- 5. Repair the faulty part from the diagnosis chart.
- 6. Erase the diagnostic trouble code.
- 7. Disconnect the scan tool.

UNOTICE

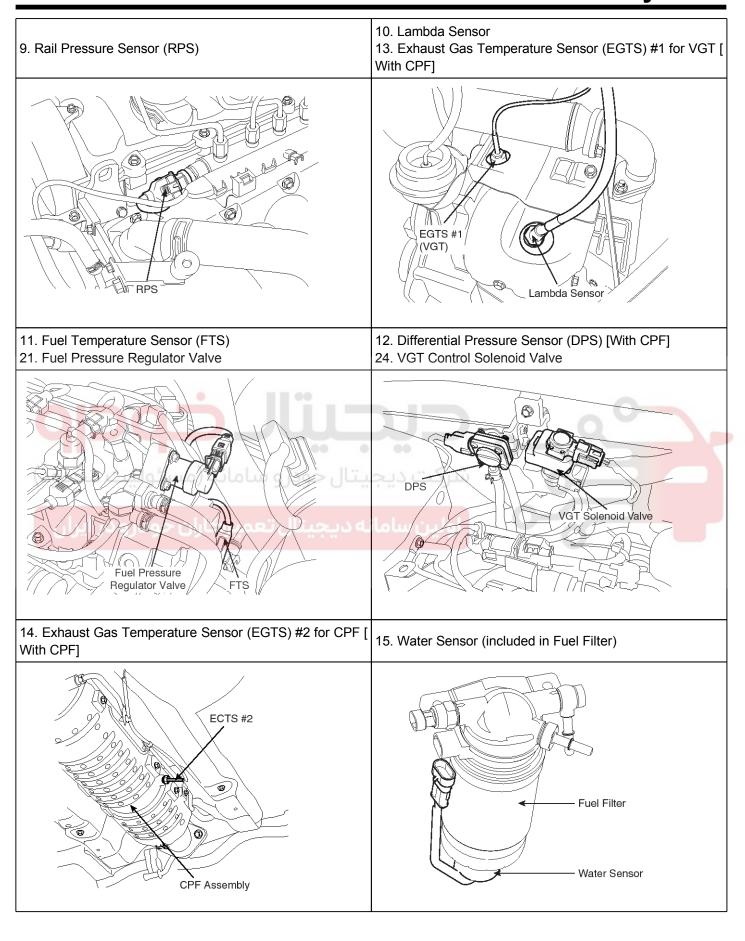
When deleting diagnostic trouble code, use scan tool as possible.

Fuel System

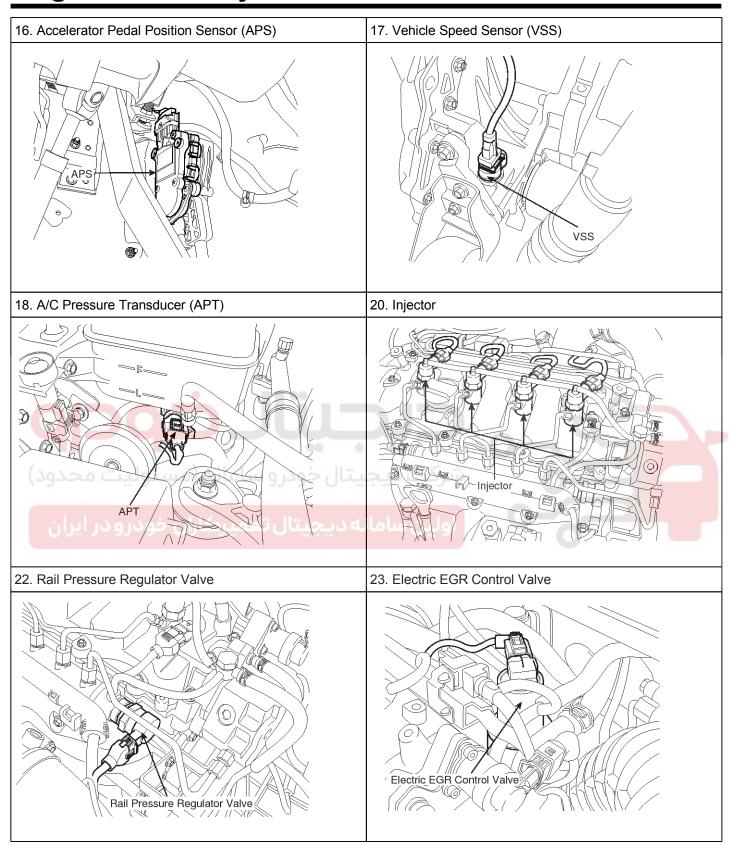
COMPONENT LOCATION

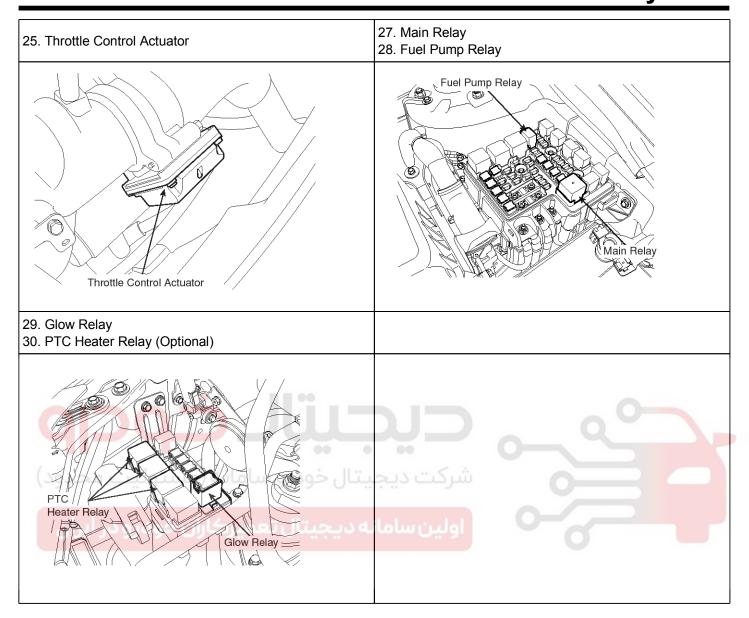

- 1. ECM (Engine Control Module)
- 2. Mass Air Flow Sensor (MAFS)
- 3. Intake Air Temperature Sensor (IATS) #1 built in MAFS
- 4. Boost Pressure Sensor (BPS)
- 5. Intake Air Temperature Sensor (IATS) #2 built in BPS
- 6. Crankshaft Position Sensor (CKPS)
- 7. Camshaft Position Sensor (CMPS)
- 8. Engine Coolant Temperature Sensor (ECTS) 17. Vehicle Speed Sensor (VSS)
- 9. Rail Pressure Sensor (RPS)
- 10. Lambda Sensor

- 11. Fuel Temperature Sensor (FTS)
- 12. Differential Pressure Sensor (DPS) [With CPF]
- 13. Exhaust Gas Temperature Sensor (EGTS) #1 for VGT [With CPF]
- 14. Exhaust Gas Temperature Sensor (EGTS) #2 for CPF [With CPF]
- 15. Water Sensor (included in Fuel Filter)
- 16. Accelerator Pedal Position Sensor (APS)
- 18. A/C Pressure Transducer (APT)
- 19. Oil Pressure Switch (OPS)
- 20. Injector


- 21. Fuel Pressure Regulator Valve
- 22. Rail Pressure Regulator Valve
- 23. Electric EGR Control Valve
- 24. VGT Control Solenoid Valve
- 25. Throttle Control Actuator
- 26. Variable Swirl Control Actuator
- 27. Main Relay
- 28. Fuel Pump Relay
- 29. Glow Relay
- 30. PTC Heater Relay (Optional)
- 31. Data Link Connector (DLC)
- 32. Multi-Purpose Check Connector

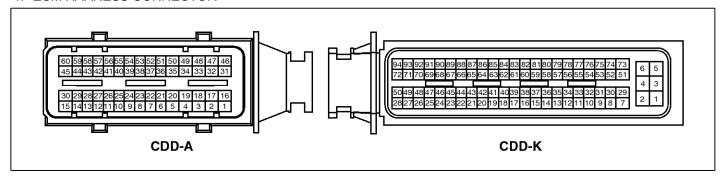
SFDF38200L


FLC-25


Fuel System

FLC-27

Fuel System



FLC-29

Engine Control Module (ECM)

ECM (ENGINE CONTROL MODULE)

1. ECM HARNESS CONNECTOR

SFDF38203L

2. ECM TERMINAL FUNCTION

CONNECTOR [CDD-A]

Pin	Description	Connected to
1	Injector (Cylinder #3) [HIGH] control output	Injector (Cylinder #3)
2	Injector (Cylinder #2) [HIGH] control output	Injector (Cylinder #2)
3		
4	Battery power	Rail Pressure Regulator Valve
(5)	ىتال خودر و سام ا نه (مسئولىت مح	شرکت دیج
6	Sensor ground	Position Sensor in Variable Swirl Control Actuator
7	Sensor shield	Crankshaft Position Sensor (CKPS)
8	Sensor ground	Rail Pressure Sensor (RPS)
9	-	
10	-	
11	-	
12	Crankshaft Position Sensor (CKPS) [-] signal input	Crankshaft Position Sensor (CKPS)
13	Sensor power (+5V)	Boost Pressure Sensor (BPS)
14	-	
15	-	
16	Injector (Cylinder #1) [HIGH] control output	Injector (Cylinder #1)
17	Injector (Cylinder #4) [HIGH] control output	Injector (Cylinder #4)
18	-	
19	Battery power	Fuel Pressure Regulator Valve
20	Sensor ground	Camshaft Position Sensor (CMPS)
21	-	
22	-	

Fuel System

Pin	Description	Connected to
23	Sensor ground	Boost Pressure Sensor (BPS)
24	-	
25	-	
26	Sensor power (+5V)	Position Sensor in Variable Swirl Control Actuator
27	Crankshaft Position Sensor (CKPS) [+] signal i nput	Crankshaft Position Sensor (CKPS)
28	Sensor power (+5V)	Rail Pressure Sensor (RPS)
29	-	
30	Motor [-] control output	Variable Swirl Control Actuator
31	Injector (Cylinder #2) [LOW] control output	Injector (Cylinder #2)
32	-	
33	Injector (Cylinder #4) [LOW] control output	Injector (Cylinder #4)
34	Rail Pressure Regulator Valve control output	Rail Pressure Regulator Valve
35	-	
36		
37	Reference frequency	Mass Air Flow Sensor (MAFS)
38	• • •	
39	ىتال خودر و سام ا نه (مسئولىت مح	شرکت دیچ
40	Boost Pressure Sensor (BPS) signal input	Boost Pressure Sensor (BPS)
41	Sensor ground	Engine Coolant Temperature Sensor (ECTS)
42	Mass Air Flow Sensor (MAFS) signal input	Mass Air Flow Sensor (MAFS)
43	Rail Pressure Sensor (RPS) signal input	Rail Pressure Sensor (RPS)
44	Sensor ground	MAFS & IATS #1
45	Fuel Pump Relay control output	Fuel Pump Relay
46	Injector (Cylinder #3) [LOW] control output	Injector (Cylinder #3)
47	Injector (Cylinder #1) [LOW] control output	Injector (Cylinder #1)
48	-	
49	Fuel Pressure Regulator Valve control output	Fuel Pressure Regulator Valve
50	Camshaft Position Sensor (CMPS) signal input	Camshaft Position Sensor (CMPS)
51	-	
52	-	
53	Intake Air Temperature Sensor (IATS) #2 signal input	Intake Air Temperature Sensor (IATS) #2 built in BPS
54	-	
55	-	
56	Position Sensor signal input	Position Sensor in Variable Swirl Control Actuator

FLC-31

Pin	Description	Connected to
57	-	
58	Engine Coolant Temperature Sensor (ECTS) signal input	Engine Coolant Temperature Sensor (ECTS)
59	Electric EGR Control Valve control output	Electric EGR Control Valve
60	Motor [+] control output	Variable Swirl Control Actuator

CONNECTOR [CDD-K]

Pin	Description	Connected to
1	Battery power	Main Relay
2	Power ground	Chassis Ground
3	Battery power	Main Relay
4	Power ground	Chassis Ground
5	Battery power	Main Relay
6	Power ground	Chassis Ground
7	Cooling Fan Relay [HIGH] control output	Cooling Fan Relay [HIGH]
8	Sensor ground	Accelerator Position Sensor (APS) #2
9	Accelerator Position Sensor (APS) #1 signal input	Accelerator Position Sensor (APS) #1
10	Sensor ground	Fuel Temperature Sensor (FTS)
11	Fuel Temperature Sensor (FTS) signal input	Fuel Temperature Sensor (FTS)
12	Sensor ground	A/C Pressure Transducer
13	A/C Pressure Transducer signal input	A/C Pressure Transducer
14	Ground	Cruise Control Switch
15	Cruise Control "ACTIVATOR" signal input	Cruise Control Switch
16	Ground	Immobilizer Control Module
17	-	
18	-	
19	ESP auto recognition signal input	With ESP: Ground, Without ESP: Open
20	-	
21	-	
22	Sensor power (+5V)	A/C Pressure Transducer (APT)
23	-	
24	Sensor power (+5V)	Cruise Control Switch
25	Diagnosis Data Line (K-Line)	Data Link Connector (DLC)
26	-	
27	Fuel consumption signal output	Trip computer

Fuel System

Pin	Description	Connected to
28	Battery power	Ignition Switch
29	VGT Control Solenoid Valve control output	VGT Control Solenoid Valve
30	Sensor ground	Accelerator Position Sensor (APS) #1
31	Accelerator Position Sensor (APS) #2 signal input	Accelerator Position Sensor (APS) #2
32	Exhaust Gas Temperature Sensor (EGTS) #2 signal input	Exhaust Gas Temperature Sensor (EGTS) #2 for CPF [With CPF]
33	Sensor ground	Exhaust Gas Temperature Sensor (EGTS) #2 for CPF [With CPF]
34	Exhaust Gas Temperature Sensor (EGTS) #1 signal input	Exhaust Gas Temperature Sensor (EGTS) #1 [for VGT] [With CPF]
35	Sensor ground	Exhaust Gas Temperature Sensor (EGTS) #1 [for VGT] [With CPF]
36	Differential Pressure Sensor (DPS) signal input	Differential Pressure Sensor (DPS) [With CPF]
37	Sensor ground	Differential Pressure Sensor (DPS) [With CPF]
38	Brake Switch "1" signal input	Brake Switch
39		
40	Water Sensor siganl input	Water Sensor in Fuel Filter
41	ستال خور و سام ا نه (مسئوليت و	211/25/10
42	A/C Pressure Switch Signal input	Blower Switch
43	ا هم برکاران خود رو در	loluniulal Commission
44	Sensor power (+5V)	Differential Pressure Sensor (DPS) [With CPF]
45	Sensor power (+5V)	Accelerator Position Sensor (APS) #1
46	Sensor power (+5V)	Accelerator Position Sensor (APS) #2
47	Immobilizer Communication Line	Immobilizer Control Module
48	Engine speed signal output	Tachometer (Cluster)
49	Cruise Control "SET" Lamp control output	Cruise Control "SET" Lamp (Cluster)
50	-	
51	Lambda Sensor Heater control output	Lambed Sesnor
52	-	-
53	-	
54	A/C Switch "ON" signal input	A/C Switch
55	-	
56	Thermo Switch signal input	A/C Switch
57	Neutral Switch signal input (M/T Only)	Neutral Switch
58	-	
59	-	

FLC-33

Pin	Description	Connected to
60	-	
61	-	
62	-	
63	-	
64	VS+ (NERNST Cell Voltage)	Lambda Sensor
65	Rc/Rp (Pumping Cell Voltage)	Lambda Sensor
66	-	
67	-	
68	Malfunction Indicator Lamp (MIL) control output	Malfunction Indicator Lamp (MIL)
69	Glow Time Lamp contorl output	Glow Time Indicator Lamp (Cluster)
70	A/C Compressor Relay control output	A/C Compressor Relay
71	Cooling Fan Relay [LOW] control output	Cooling Fan Relay
72	Main Relay control output	Main Relay
73	11**	
74		
75	Vehicle speed signal input	Vehicle Speed Sensor (VSS)
76	یتال خودر و سام ا نه (مسئولیت م	شرکت دیچ
77	Feedback signal input	Throttle Control Actuator
78	نه دیجیتال تعمیرکاران خودرو در	اولين ساما
79	Clutch Switch signal input (M/T Only)	Clutch Switch
80	Brake Switch "2" signal input	Brake Switch
81	MT/AT auto recognition signal input	M/T: Open, A/T: Ground
82	-	
83	CAN [LOW]	Other Control Modules
84	CAN [HIGH]	Other Control Modules
85	-	
86	VS-/IP- (Virtual Ground)	Lambda Sensor
87	Rc (Compensative Resistance)	Lambda Sensor
88	-	
89	Intake Air Temperature Sensor (IATS) #1 signal input	Intake Air Temperature Sensor (IATS) #1 in MAFS
90	Throttle Control Actuator control output	Throttle Control Actuator
91	Cruise Control "MAIN" Lamp control output	Cruise Control "MAIN" Lamp (Cluster)
92	Immobilizer Lamp control output	Immobilizer Lamp (Cluster)
93	Glow Relay control output	Glow Relay

Fuel System

Pin	Description	Connected to
94	PTC Heater Relay control output	PTC Heater Relay

3. ECM TERMINAL INPUT/OUTPUT SIGNAL

CONNECTOR [CDD-A]

Pin	Description	Condition	Туре	Level
1	Injector (Cylinder #3) [HIGH] control output	Idle	Pulse	Battery Voltage ~ 80V
2	Injector (Cylinder #2) [HIGH] control output	Idle	Pulse	Battery Voltage ~ 80V
3	-	-	-	-
4	Battery power	Idle	DC	Battery Voltage
5	-	-	-	-
6	Sensor ground	Idle	DC	Max. 50mV
7	Sensor shield	Idle	DC	Max. 50mV
8	Sensor ground	Idle	DC	Max. 50mV
9	-	-	-	-
10	-	-	-	-
11			-	0-
12	Crankshaft Position Sensor (CKPS) [-] signal input	Idle	Sine Wav-	Vpeak_to_peak: Min.1 .0V
دار	Sensor power (+5V)	IG OFF	20	Max. 0.5V
13	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
14	بيامانه ديجيتال تعميركاران خودرو در ايران	اولىن ر	0	
15	-	_	- 0	-
16	Injector (Cylinder #1) [HIGH] control output	Idle	Pulse	Battery Voltage ~ 80V
17	Injector (Cylinder #4) [HIGH] control output	Idle	Pulse	Battery Voltage ~ 80V
18	-	-	-	-
10	D #	IG OFF	D.C.	Max. 0.5V
19	Battery power	IG ON	DC	Battery Voltage
20	Sensor ground	Idle	DC	Max. 50mV
21	-	-	-	-
22	-	-	-	-
23	Sensor ground	Idle	DC	Max. 50mV
24	-	-	-	-
25	-	-	-	-
26	Sensor power (+5V)	IG OFF	- DC	Max. 0.5V
		IG ON		4.9 ~ 5.1V
27	Crankshaft Position Sensor (CKPS) [+] signal input	Idle	Sine Wav- e	Vpeak_to_peak: Min.1 .0V

FLC-35

Pin	Description	Condition	Туре	Level
-00	0	IG OFF	DC	Max. 0.5V
28	Sensor power (+5V)	IG ON		4.9 ~ 5.1V
29	-	-	-	-
30	Motor [-] control output	Active	DC	Max.0.5V
31	Injector (Cylinder #2) [LOW] control output	Idle	Pulse	Peak Current: 19 ~ 21 A Hold Current: 11 ~ 13 A
32	-	-	-	-
33	Injector (Cylinder #4) [LOW] control output	Idle	Pulse	Peak Current: 19 ~ 21 A Hold Current: 11 ~ 13 A
34	Rail Pressure Regulator Valve control output	idle	Pulse	Hi: Battery Voltage Lo: Max. 1.0V Frequency = 1kHz ± 2%
35	سامانه دیجیتال تعمیرکاران خودرو در ایران	اولین،	- 6	-
36	-	-	-	-
37	Reference frequency	ldle	Pulse	Hi: Vcc or Battery Voltage Lo: Max. 1.0V
38	-	-	-	-
39	-	-	-	-
40	Boost Pressure Sensor (BPS) signal input	IG ON	Analog	0.5 ∼ 4.5V
41	Sensor ground	Idle	DC	Max. 50mV
42	Mass Air Flow Sensor (MAFS) signal input	ldle	Pulse	Hi: Vcc or Battery Voltage Lo: Max. 1.0V
		IG ON		
43	Pail Pressure Sensor (PDS) signal input	Idle	Analog	Max. 1.0V 1.0 ~ 1.5V
43	Rail Pressure Sensor (RPS) signal input	3000 RPM		1.0 ~ 1.5 v 1.5 ~ 3.0 V
11	Songer ground		DC	
44	Sensor ground	Idle	DC	Max. 50mV

Fuel System

Pin	Description	Condition	Туре	Level
45	Earl Davis Balance at a landard	Relay OFF	DC	Battery Voltage
45	Fuel Pump Relay control output	Relay ON		Max. 1.0V
46	Injector (Cylinder #3) [LOW] control output	ldle	Pulse	Peak Current: 19 ~ 21 A Hold Current: 11 ~ 13 A
47	Injector (Cylinder #1) [LOW] control output	ldle	Pulse	Peak Current: 19 ~ 21 A Hold Current: 11 ~ 13 A M 19 ~ 21A 11 ~ 13A
48			-	-
49	Fuel Pressure Regulator Valve control output	Idle	Pulse	Hi: Battery Voltage
	00 0 00			Lo: Max. 1.0V
(7	دیجیتال خودرو سامانه (مسئولیت محدو		. 0-	Hi: Vcc or Battery Volt-
50	Camshaft Position Sensor (CMPS) signal input	Idle	Pulse	age
51	سامانه دیجیتال تعمیرکاران خودرو در ایران	اولين،		Lo: Max. 1.0V
52	-	-	- 0	-
53	Intake Air Temperature Sensor (IATS) #2 signal input	Idle	- Analog	0.5 ~ 4.5V
54	intake Ali Temperature Sensor (IATS) #2 signal imput	lule	- Allalog	0.5 4.50
55				_
56	Position Sensor signal input	Idle	DC	0.5 ~ 4.5V
57	-	-	-	-
58	Engine Coolant Temperature Sensor (ECTS) signal input	Idle	Analog	0.5 ~ 4.5V
				Hi: Battery Voltage
59	Electric EGR Control Valve control output	Idle	Pulse	Lo: Max. 1.0V
	Motor [+] control output	Active	Pulse	Hi: Battery Voltage
60				Lo: Max. 1.0V

FLC-37

CONNECTOR [CDD-K]

	NEOTOR [ODD-R]			
Pin	Description	Condition	Туре	Level
_	Detter rewar	IG OFF	DC	Max. 1.0V
1	Battery power	IG ON		Battery Voltage
2	Power ground	Idle	DC	Max. 50mV
	Dettemperature	IG OFF	D0	Max. 1.0V
3	Battery power	IG ON	DC	Battery Voltage
4	Power ground	Idle	DC	Max. 50mV
_	D-44-management	IG OFF	D0	Max. 1.0V
5	Battery power	IG ON	DC	Battery Voltage
6	Power ground	Idle	DC	Max. 50mV
7	Cooling For Dolor II II Cl II control output	Relay OFF	DC	Battery Voltage
7	Cooling Fan Relay [HIGH] control output	Relay ON	DC	Max. 1.0V
8	Sensor ground	Idle	DC	Max. 50mV
	Accelerator Position Sensor (APS) #1 signal input	C.T	A	0.3 ~ 0.9V
9		W.O.T	Analog	4.0 ~ 4.8V
10	Sensor ground	Idle	DC	Max. 50mV
11	Fuel Temperature Sensor (FTS) signal input	IG ON	Analog	0.5 ~ 4.5V
12	دیجیتال خودر و سامانه (مستو Sensor ground	Idle	DC	Max. 50mV
13	A/C Pressure Transducer signal input	A/C On	Analog	Max. 4.8V
14	سامانه دیجیتال تعمیرکاران خودرو د (Ground	Idle	DC	Max. 50mV
15	Cruise Control "ACTIVATOR" signal input	_	-	-
16	Ground	Idle	DC	Max. 50mV
17	-	-	-	-
18	-	-	-	-
19	ESP auto recognition signal input	Idle	DC	Max. 50mV (With ESP
20	-	-	-	-
21	-	-	-	-
22	Songer power (±5)()	IG OFF	DC	Max. 0.5V
22	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
23	-	-	-	-
24	Songer power (+5\/)	IG OFF	DO	Max. 0.5V
24	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V

Fuel System

Pin	Description	Condition	Туре	Level
	Diagnosis K-Line	When transmitti-	Dulas	Hi: Min. VbattX80%
0.5		ng		Lo: Max. VbattX20%
25			Pulse	Hi: Min. VbattX70%
		When receiving		Lo: Max. VbattX30%
26	-	-	-	-
27	Fuel consumption signal output	Idle	Pulse	Hi: Battery Voltage or Vcc
				Lo: Max. 0.5V
28	Pattery newer	IG OFF	DC	Max. 1.0V
28	Battery power	IG ON	DC	Battery Voltage
20	VCT Control Colonaid Valva control autout	Idlo	Dulas	Hi: Battery Voltage
29	VGT Control Solenoid Valve control output	Idle	Pulse	Lo: Max. 0.5V
30	Sensor ground	Idle	DC	Max. 50mV
0.4		C.T		0.3 ~ 0.9V
31	Accelerator Position Sensor (APS) #2 signal input	W.O.T	Analog	1.5 ~ 3.0V
32	Exhaust Gas Temperature Sensor (EGTS) #2 signal input	Idle	Analog	0.5 ~ 4.5V
33	Sensor ground	Idle	DC	Max. 50mV
34	Exhaust Gas Temperature Sensor (EGTS) #1 signal input	Idle	Analog	0.5 ~ 4.5V
35	Sensor ground	Idle	DC	Max. 50mV
36	Differential Pressure Sensor (DPS) signal input	Idle	Analog	0.5 ~ 4.5V
37	Sensor ground	Idle	DC	Max. 50mV
20	Dunlin Christole IIIII nimal innut	Release	DC	Max. 0.5V
38	Brake Switch "1" signal input	Push		Battery Voltage
39	-	-	-	-
40	Mater Concessional insul	Full of Water	Analan	Battery Voltage
40	Water Sensor siganl input	No Water	Analog	Max. 1.0V
41	-	-	-	-
40	A/C Procesure Switch Signal in act	Blower Off	DC	Battery Voltage
42	A/C Pressure Switch Signal input	Blower On	DC	Max. 2.0V
43	-	-	-	-
4.4	Company (15)()	IG OFF	DC	Max. 0.5V
44	Sensor power (+5V)	IG ON		4.9 ~ 5.1V
4.5		IG OFF	- DC	Max. 0.5V
45	Sensor power (+5V)	IG ON		4.9 ~ 5.1V

FLC-39

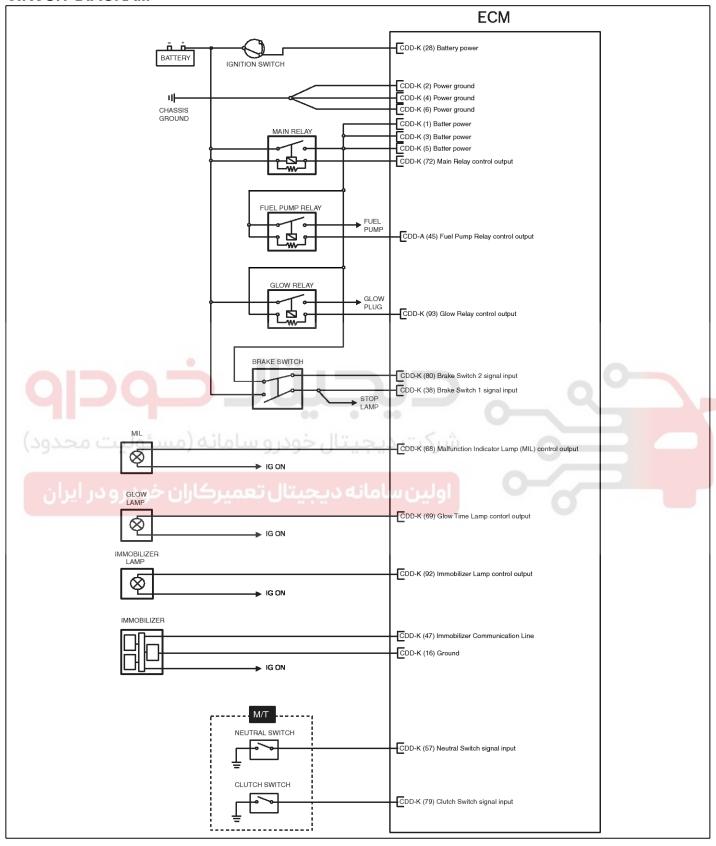
Pin	Description	Condition	Туре	Level
40	0	IG OFF	D.C.	Max. 0.5V
46	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
		After IG ON wh-		Hi: Min. 8.5V
47	Immobilizer Communication Line	en communicati- ng	Pulse	Lo: Max. 3.5V
				Hi: Battery Voltage
48	Engine speed signal output	Idle	Pulse	Lo: Max. 5.0V
			DC Pulse	Frequency: 50 ~ 60Hz
49	Cruise Control "SET" Lamp control output	-	-	-
50	-	-	-	-
51	Lambda Sensor Heater control output	Vehicle Run	Pulsa	Hi: Battery Voltage
J'	Lambua Gensor Freater Control Gulput	verlicie (Kuri	i disc	Lo: Max. 1.0V
52	-	-	-	-
53	-	-	-	-
54	A/C Switch "ON" signal input	A/C SW OFF A/C SW ON DC	DC	Max. 1.0V
34	7VO CWILCH SIX SIGNAL INPUT	A/C SW ON		Battery Voltage
55	- 00 0	- C		-
56	Thermo Switch signal input	A/C OFF Max.	Max. 0.5V	
	Thermo ewiter signal input	A/C ON		Battery Voltage
57	Neutral Switch signal input (M/T Only)	SW OFF (Neutr- al)	DC	Battery Voltage
		SW ON (1st)	Pulse Pulse Pulse Pulse DC DC DC Analog	Max. 0.5V
58	-	-	-	-
59	-	-	-	-
60	-	-	-	-
61	-	-	-	-
62	-	-	_	-
63	-	-	_	-
64	VS+ (NERNST Cell Voltage)	Engine Run	Analog	Normal: 450 ± 50mV Rich: Max. Normal + 1 50mV Lean: Min. Normal - 1 50mV
65	Rc/Rp (Pumping Cell Voltage)	Engine Run	Analog	Normal: 0 ± 500mV Rich: Min. Normal - 1. 5V Lean: Max. Normal + 1.5V

Fuel System

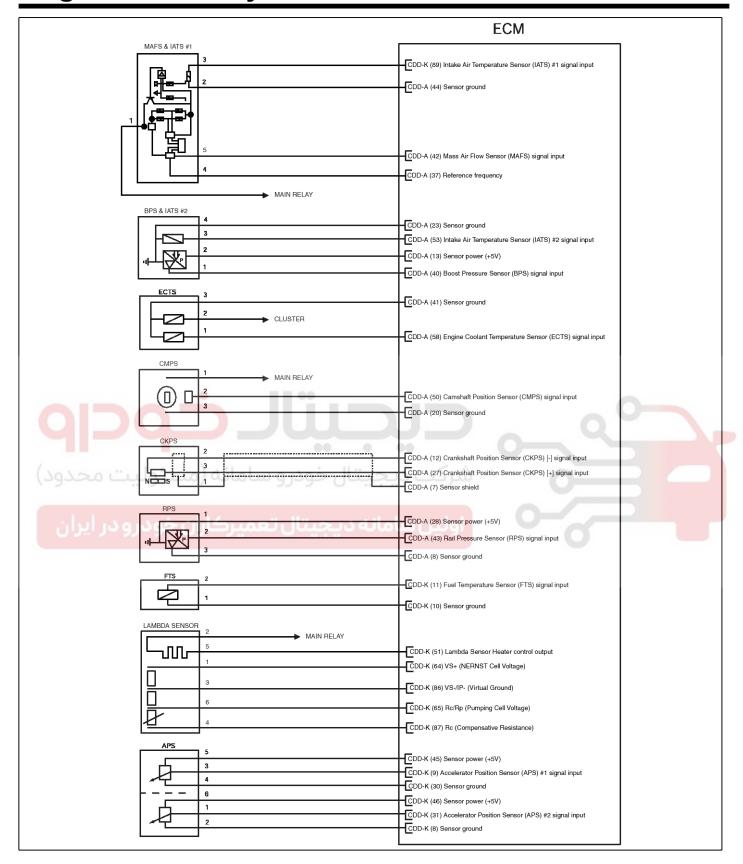
Pin	Description	Condition	Туре	Level
66	-	-	-	-
67	-	-	-	-
60	Molfination ladicator Loren (MIL) control output	Lamp OFF	DC	Battery Voltage
68	Malfunction Indicator Lamp (MIL) control output	Lamp ON	DC	Max. 1.0V
69	Clay Time Lamp central quitaut	Glow OFF	DC	Battery Voltage
69	Glow Time Lamp control output	Glow ON	Type DC DC DC DC Pulse - DC DC - Analog Analog	Max. 1.0V
70	A/C Compressor Relay control output	A/C OFF	DC	Battery Voltage
	AC Compressor Relay control output	A/C ON	DC	Max. 1.0V
71	Cooling Fan Relay [LOW] control output	Relay OFF	DC	Battery Voltage
	Cooling Fan Relay [LOW] Control output	Relay ON	- DC DC DC DC DC - DC - DC - DC - DC - Pulse - DC	Max. 1.0V
72	Main Relay control output	Relay OFF	DC	Battery Voltage
12	Main Relay Control output	Relay ON	- DC DC DC - DC DC DC DC Pulse Pulse Pulse Pulse Analog	Max. 1.0V
73	-	-	-	-
74		-	-	-
75	Vehicle speed signal input	Vehicle Run	Dulas	Hi: Min. 5.0V
/3	verilicie speed signal iriput	verlicie Ruff	Puise	Lo: Max. 1.0V
76			-	-
77	Feedback signal input	Normal	DC	Battery Voltage
		Abnormal	D0	Max. 0.5V
78	سامانه دیجیتال تعمیرکاران خودرو در ایران	اولین،	- 6	-
79	Clutch Switch signal input (M/T Only)	Release	DC	Max. 0.5V
	Clater Switch digital input (w/ 1 Chily)	Push	50	Battery Voltage
80	Brake Switch "2" signal input	Release	DC	Battery Voltage
	Brake Gwitch 2 Signal Input	Push	- DC DC DC - DC - DC DC DC - Pulse - DC DC -	Max. 0.5V
81	MT/AT auto reconition signal input	MT	DC	Battery Voltage
	WITHAT date reconsider signal input	AT	50	Max. 0.5V
82	-	-	-	-
83	CAN [LOW]	RECESSIVE	Pulsa	2.0 ~ 3.0V
	OAN [LOVV]	DOMINANT	i disc	0.5 ~ 2.25V
84	CAN [HIGH]	RECESSIVE	Pulea	2.0 ~ 3.0V
	o at priori	DOMINANT	- DC - DC - DC - Pulse	2.75 ~ 4.5V
85	-	-	-	-
86	VS-/IP- (Virtual Ground)	Engine Run	Analog	2.4 ~ 2.6V
87	Rc (Compensative Resistance)	Engine Run	Analog	Current Pump - Current Adjust < 0.2V

FLC-41

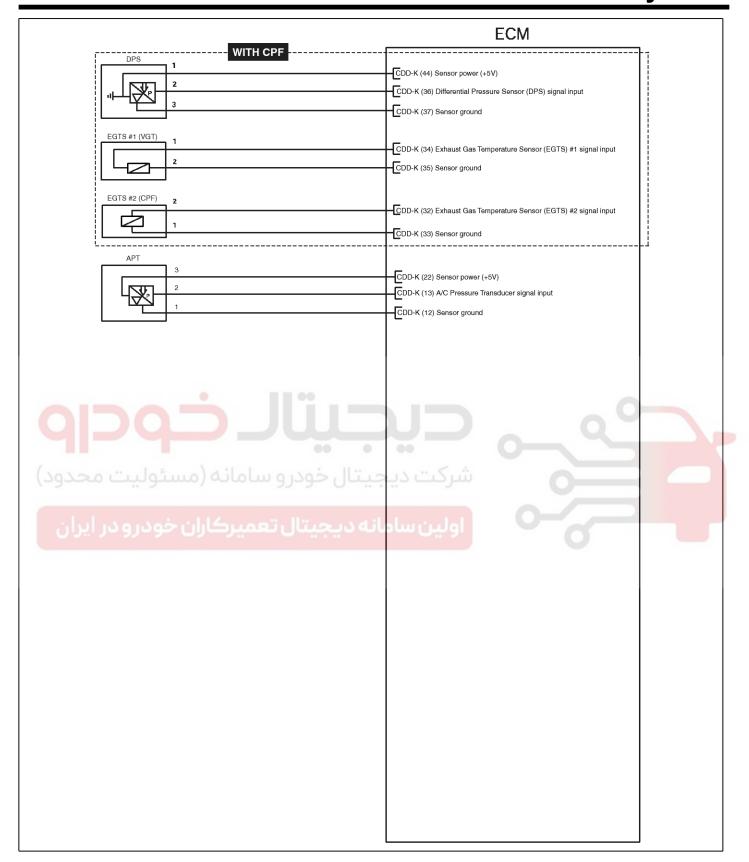
Pin	Description	Condition	Туре	Level
88	-	-	-	-
89	Intake Air Temperature Sensor (IATS) #1 signal input	Idle	Analog	0.5 ∼ 4.5V
90	Throttle Control Actuator control output	Idle Ar Key ON /Key O- FF - Lamp OFF Lamp ON Relay OFF Relay ON Relay OFF	Dulas	Hi: Battery Voltage
90	Throttle Control Actuator control output		Puise	Lo: Max. 1.0V
91	Cruise Control "MAIN" Lamp control output	-	ı	-
92	Immobilizer Lamp central output	Idle An Key ON /Key O- FF - Lamp OFF Lamp ON Relay OFF Relay ON Relay OFF	DC	Battery Voltage
92	Immobilizer Lamp control output		В	Max. 1.0V
93	Clow Polov control output	Relay OFF	DC	Battery Voltage
93	Glow Relay control output	Idle Analog Key ON /Key O- FF Pulse Lamp OFF Lamp ON Relay OFF Relay ON Relay OFF DC DC	В	Max. 1.0V
94	DTC Heater Poley control output	Relay OFF	DC	Battery Voltage
94	PTC Heater Relay control output	Relay ON	ЪС	Max. 1.0V



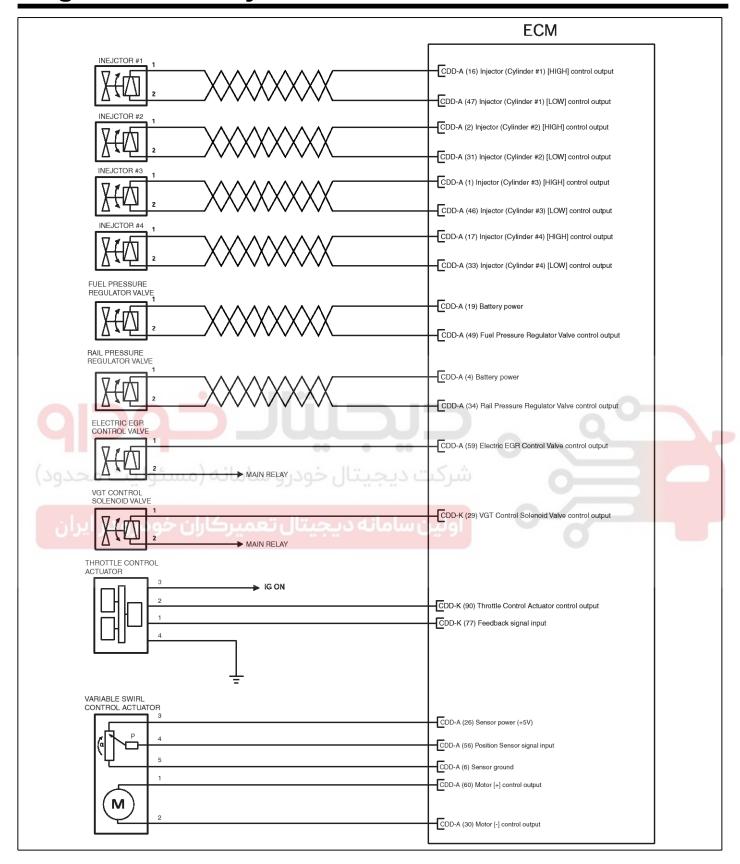
اولین سامانه دیجیتال تعمیرکاران خودرو در ایران


Fuel System

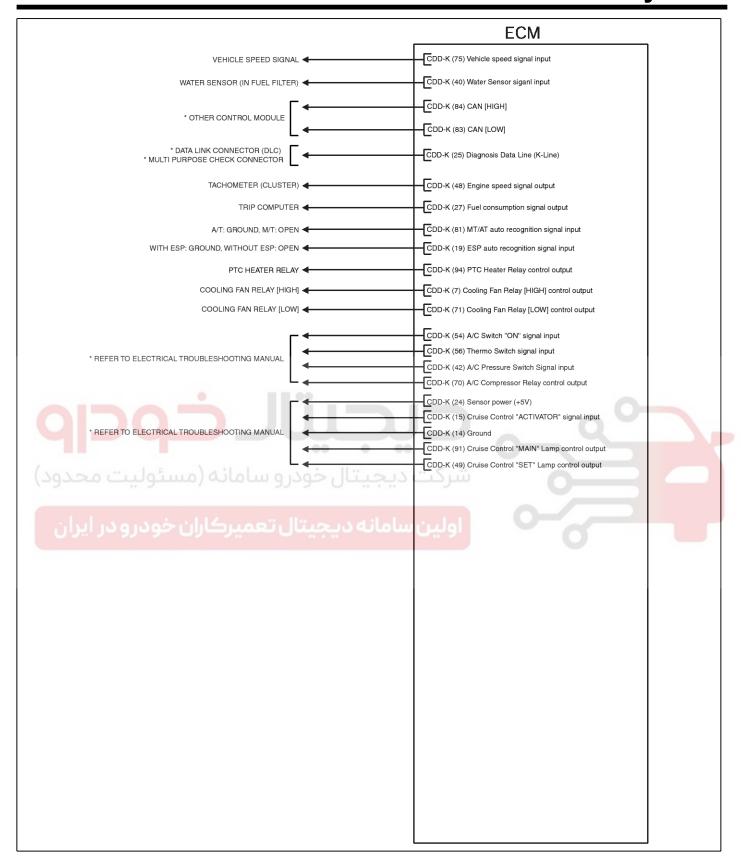
CIRCUIT DIAGRAM


SFDF38204L

FLC-43


SFDF38205L

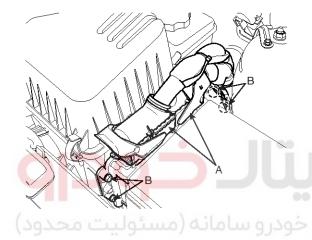
Fuel System


SFDF38206L

FLC-45

SFDF38207L

Fuel System


SFDF38266L

FLC-47

REPLACEMENT

CAUTION

- After replacing ECM, MUST input the injector specific data (7 digits) of each cylinder into a new ECM with scan tool.
- In the case of the vehicle equipped with immobilizer, perform "KEY **TEACHING"** procedure together (Refer to "IMMOBILIZER" in BE group).
- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the ECM connector (A).

- 3. Unscrew the ECM mounting bolts (B) and remove the ECM.
- 4. Install a new ECM.

ECM installation bolts: $7.8 \sim 11.8 \text{ N·m}$ ($0.8 \sim 1.2 \text{ kgf·m}$, 5.8 ~ 8.7 lbf·ft)

- 5. Connect the negative(-) battery cable.
- 6. Perform "ECM Change" procedure [With CPF].
 - 1) Turn ignition switch OFF.
 - 2) Connect a scan tool to Data Link Connector (DLC).
 - 3) Turn ignition switch ON.

Select "COMPONENT CHANGE ROUTINE".

MODEL : VEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

SFDF28235L

5) Select "ECU CHANGE". MODEL : VEHICLE NAME SYSTEM: ENGINE(DIESEL)

01. ECU CHANGE

- 02. LAMBDA SENSOR CHANGE
- 03. RAIL PRESSURE SENSOR CHANGE
- 04. AIR FLOW SENSOR CHANGE
- **05. CPF CHANGE**
- 06. D/PRESSURE SENSOR CHANGE
- 07. SWIRL CONTROL VALUE CHANGE

SEDE28236L

- 6) Input the mileage in odometer. KECU CHANGE>
- 1. IN PUT THE CURRENT ODO VALUES IN CLUSTER TO COUNT THE DRIFT SOOT VALUE INFORMATION OF CPF.

200000 Km

2. REFER TO PREVIOUS MENU TO SEE INJECTOR INFORMATION.

PRESS [ENTER] KEY.

LFIG108A

Fuel System

Confirm the "Complete" message, and then turn ignition switch OFF.

COMPLETED! AFTER 10 SEC. OR MORE PR SINCE IG.KEY OFF, TURN IG.KEY ON

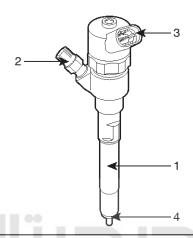
SFDF28237L

- 8) Wait for more than 10 seconds, and then turn ignition switch ON.
- 7. Perform "Injector Specific Data Input" procedure (Refer to "INJECTOR" in this group).
- 8. Perform "Key Teaching" procedure (Refer to "IMMOBILIZER" in BE group).

ECM PROBLEM INSPECTION PROCEDURE

- TEST ECM GROUND CIRCUIT: Measure resistance between ECM and chassis ground using the backside of ECM harness connector as ECM side check point. If the problem is found, repair it.
- TEST ECM CONNECTOR: Disconnect the ECM connector and visually check the ground terminals on ECM side and harness side for bent pins or poor contact contact pressure. If the problem is found, repair it.
- If problem is not found in Step 1 and 2, the ECM could be faulty. If so, replace the ECM with a new one, and then check the vehicle again. If the vehicle operates normally then the problem was likely with the ECM.
- 4. RE-TEST THE ORIGINAL ECM: Install the original ECM (may be broken) into a known-good vehicle and check the vehicle. If the problem occurs again, replace the original ECM with a new one. If problem does not occur, this is intermittent problem (Refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE)

FLC-49


Injector

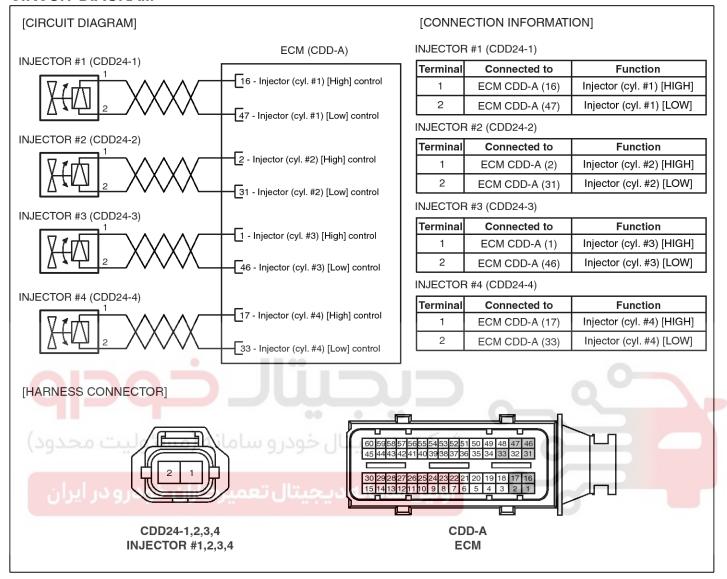
DESCRIPTION

The start of injection and the injected fuel quantity are adjusted by electrically triggered injectors. These injectors supersede the nozzle-and-holder assembly (nozzle and nozzle-holder).

Similar to the already existing nozzle-holder assemblies in direct-injection (DI) diesel engines, clamps are preferably used for installing the injectors in the cylinder head. This means that the Common Rail injectors can be installed in already existing DI diesel engines without major modifications to the cylinder head.

COMPONENTS

- 1. Injector
- 2. Fuel Inlet
- 3. Connector
- 4. O-ring

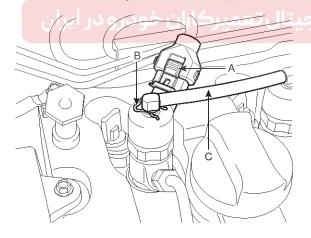

SFDF38209L

SPECIFICATION

Items	Specification
Coil Resistance (Ω)	0.33Ω [20℃(68°F)]

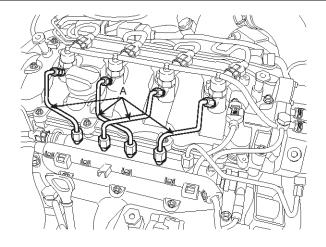
Fuel System

CIRCUIT DIAGRAM

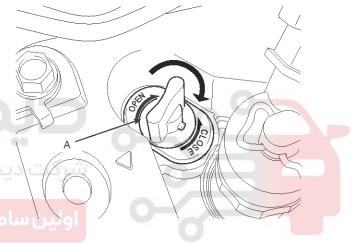

SFDF38210L

FLC-51

REMOVAL


ACAUTION

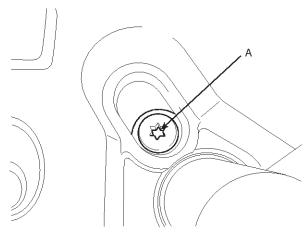
- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- · Do not remove injector except for special case.
- · When installing Injector
 - Wash the contact area of the injector and replace the O-ring with a new one.
 - Spread oil on the injector O-ring.
 - To protect damage caused by shock, vertically insert the injector into the cylinder head.
- · When installing High Pressure Fuel Pipe
 - Do not use again the used high pressure fuel pipe.
 - Install the flange nut correctly.
- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the injector connector (A).


LFIG084A

- 3. After removing the clip (B), disconnect the retun hose (C) from the injectors.
- 4. Disconnect the high pressure fuel pipe (A) connecting the injectors with the common rail.

SFDF38211L

5. Rotate the lever (A) clockwise and pull it upward.



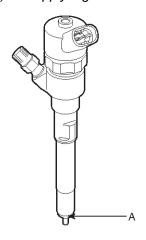
SMGFL6142L

6. Unscrew the clamp tightening bolt (A) and pull the injector upward.

MNOTICE

If the injector adheres to the cylinder head, use the special Service Tool (SST No. : 09351-4A300)

Fuel System


LFIG087A

INSTALLATION

1. Installation is reverse of removal.

MOTICE

When installing the injector, MUST REPLACE the O-ring (A) and apply a grease to that.

LFIG089A

MOTICE

When installing the high pressure fuel pipe, apply the specified tightening torques with the special service tool (Refer to below table).

Item	Dimension	SST No.	
Flange Nut (Inj - ector Side)	14 mm (0.551 in)	09314-27110	
Flange Nut (Co- mmon Rail Side)	17 mm (0.669 in)	09314-27120	

- \cdot Injector clamp installation bolt: 24.5 \sim 28.4 N·m (2.5 \sim 2.9 kgf·m, 18.1 \sim 20.1 lbf·ft)
- \cdot High pressure fuel pipe installation nut: 24.5 \sim 28.4 N·m (2.5 \sim 2.9 kgf·m, 18.1 \sim 20.1 lbf·ft)

REPLACEMENT

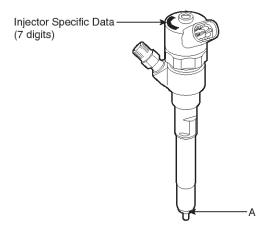
ACAUTION

- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- · Keep cleanly the parts and the working area.
- · Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- · When installing Injector
 - Wash the contact area of the injector and replace the O-ring with a new one.
 - Spread oil on the injector O-ring.
 - To protect damage caused by shock, vertically insert the injector into the cylinder head.
- When installing High Pressure Fuel Pipe
 - Do not use again the used high pressure fuel pipe.
 - Install the flange nut correctly.

ACAUTION

After replacing injector, MUST input the injector specific data (7 digits) of each cylinder into ECM with scan tool.

- Remove the injector (Refer to "REMOVAL" procedure).
- 2. Install the injector (Refer to "INSTALLATION" procedure).
- Perform "Injector Specific Data Input" procedure (Refer to "INJECTOR SPECIFIC DATA INPUT" procedure).


FLC-53

INJECTOR SPECIFIC DATA INPUT

ACAUTION

After replacing injector, MUST input the injector specific data (7 digit) of each cylinder into ECM with scan tool.

MOTICE

SFDF38212L

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "INJECTOR SPECIFIC DATA".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION
- 09. COMPONENT CHANGE ROUTINE

10. INJECTOR SPECIFIC DATA

11. DATA SETUP(UNIT CONV.)

SFDF28239L

- 5. Confirm the message, and then press "ENTER" key.
- * CONDITION: IG. KEY ON(ENGINE STOP)
- 1. IF THE INJ. IS CHANGED, THE INJ. CORRECTION FUNC SHOULD BE PERFORM TO CONTROL THE NOR. FUEL INJ.
- 2. TO INPUT THE INJECTOR NUMBER, PRESS SHIFT KEY AND SELECT THE CYL. BY ARROW KEY AT THE SAME TIME. AND INPUT THE INJ. DATA BY [F1]~[F6], DIGIT KEY. PRESS [ENTER].
- AFTER COMPLETE, TURN THE IG. KEY OFF AND CHECK THE SYSTEM AFTER 10 SEC.

LFIG111A

6. Input the injector data (7 digit), and then press "ENTER" key.

INJECTOR 1	72G3GAB
INJECTOR 2	BS8PHSI
INJECTOR 3	B18GD5D
INJECTOR 4	AZ8WBSB

 READ IQA CODE OR INPUT THE DATA BY FI~F6 KEY AND PRESS [ENTER] KEY.

ABCD EFGH IJKL MNOP QR-U VW-Z

SFDF28240L

7. After comfirming the "Complete" message, turn ignition switch OFF.

INJECTOR 1	72G3GAB
INJECTOR 2	BS8PHSI
INJECTOR 3	B18GD5D
INJECTOR 4	AZ8WBSB

WRITING COMPLETE

ABCD EFGH IJKL MNOP QR-U VW-Z

SFDF28241L

Fuel System

8. In about 10 seconds, turn ignition switch ON and check the injector specific data memorized in the ECM.

MOTICE

In case of failure, input the injector specific data (7 digits) into ECM again.

INJECTOR 1	72G3GAB
INJECTOR 2	BS8PHSI
INJECTOR 3	B18GD5D
INJECTOR 4	AZ8WBSB

WRITING FAIL

FLC-55

INSPECTION [COMPRESSION TEST]

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE TEST FUNCTION".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- 01. DIAGNOSTIC TROUBLE CODES
- **02. CURRENT DATA**
- 03. FLIGHT RECORD
- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**

07. ENGINE TEST FUNCTION

08. CPF SERVICE REGENERATION

SFDF28243L

5. Confirm the message, and then press "ENTER" key.

System Information

ECU H/W: 00000-00000

ROM ID : 0000000000000

THIS FUNCTION IS AVAILABE.

If you ready, Press[ENTER].

SFDF28244L

Select "COMPRESSION TEST".

01. COMPRESSION TEST

02. IDLE SPEED COMPARISON

03. INJECT. QUANTITY COMPARISON

SFDF28245L

7. Perform the test in accordance with the message.

This test is used for detecting cylinder specific engine speed without injection.

*Test condition

-Shift level : P or N

-Engine : Stop(IGN. ON)

-Electrical Load : OFF

If you ready, now cranking, and stop cranking when stop message appear on the screen. Press[ENTER].

SFDF28246L

CYLI	CYLINDER ENGINE SPEED(RPM)					
#1	#2	#3	#4			
257	259	259	258			
263	259	259	258			
263	259	263	258			
263	260	263	261			
256	260	263	261			
256	260	258	256			
256	259	258	256			

ANALYZE THE TEST RESULT.

ANAL

SEDE28247I

Fuel System

CYLI	CYLINDER ENGINE SPEED(RPM)					
#1	#2	#3	#4			
259	261	266	260			
259	261	259	257			
259	257	259	257			
258	257	259	257			
258	257	260	260			
258	259	260	260			
257	259	259	260			

		=	
~ <	>>	AVG	HELP

	F28	

SPEED(RPM)	200 250	300	350	AVG.
#1 CYL.				258
#2 CYL.				259
#3 CYL.				260
#4 CYL.				258

*The higher cylinder engine speed:

->The low compression pressure.

*It can help to identify the mechanical defects.

PREV

SFDF28250L

MOTICE

If a cylinder's engine speed is higher than the other cylinders, the cylinder's compression pressure is low.

FLC-57

[IDLE SPEED COMPARISON]

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE TEST FUNCTION".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **01. DIAGNOSTIC TROUBLE CODES**
- **02. CURRENT DATA**
- 03. FLIGHT RECORD
- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**

07. ENGINE TEST FUNCTION

08. CPF SERVICE REGENERATION

SEDF282431

5. Confirm the message, and then press "ENTER" key.

System Information

ECU H/W: 00000-00000

ROM ID : 0000000000000

THIS FUNCTION IS AVAILABE.

If you ready, Press[ENTER].

SFDF28244L

Select "IDLE SPEED COMPARISON".

01. COMPRESSION TEST

02. IDLE SPEED COMPARISON

03. INJECT. QUANTITY COMPARISON

SFDF28251L

7. Perform the test in accordance with the message.

This test is used for detecting cylinder specific engine speed with injector energizing.

(Cylinder balancing function is deactivated.)

*Test condition

-Compression test : Normal

-Shift level

: P or N

-Engine

: Idle

-Electrical Load : OFF

.

T I D FIN

IF you ready, Press[ENTER].

SFDF28252L

CYLINDER ENGINE SPEED(RPM)

#1	# 2	#3	# 4
909	904	909	900
911	904	913	899
911	906	911	901
913	905	911	903
909	903	910	900
908	905	906	900
913	904	911	902

ANALYZE THE TEST RESULT.

ANAL

SFDF28253L

Fuel System

CYLINDER ENGINE SPEED(RPM)						
#1	#2	#3	#4			
909	904	909	900			
911	904	913	899			
911	906	911	901			
913	905	911	903			
909	903	910	900			
908	905	906	900			
913	904	911	902			

<<	>>	AVG	HELP

SFDF28254L

SPEED(RPM)6	50	7	50	85	50	95	0	AVG.
#1 CYL.								911
#2 CYL.								904
#3 CYL.								909
#4 CYL.								900

شرکت دیجیتال خودروسامانه (مسئولیت محدود)

PREV HELP

اولین سامانه دیجیتال تحصیرکاران خودرو در ایران

SFDF28255L

*The lower engine speed:

->The injector injects less quantity than other injectors.

*The higher engine speed:

->The injector injects more quantity than other injectors.

PREV

SFDF28256L

MOTICE

The injector in cylinder with significantly high (low) idle speed injects more (less) quantity than the other injectors.

FLC-59

[INJECTION QUANTITY COMPARISON]

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE TEST FUNCTION".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **01. DIAGNOSTIC TROUBLE CODES**
- **02. CURRENT DATA**
- 03. FLIGHT RECORD
- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**

Ø7. ENGINE TEST FUNCTION

08. CPF SERVICE REGENERATION

SFDF28243L

5. Confirm the message, and then press "ENTER" key.

System Information

ECU H/W: 00000-00000

ROM ID : 0000000000000

THIS FUNCTION IS AVAILABE.

If you ready, Press[ENTER].

SFDF28244L

- 6. Select "INJECTION QUANTITY COMPARISON".
 - **01. COMPRESSION TEST**
 - 02. IDLE SPEED COMPARISON

03. INJECT. QUANTITY COMPARISON

SFDF28257L

7. Perform the test in accordance with the message.

This test is used for detecting cylinder specific quantity with individual energizing of injector. (Cylinder balancing function is activated.)

*Test condition

-Engine

-Compression test : Normal

-Shift level : P or N

: Idle

-Electrical Load : OFF

IF you ready, Press[ENTER].

SFDF28258L

ENG. SPEED(RPM)			INJEC	TION Q	UANI TY	(EMM)	
#1	#2	#3	#4	#1	#2	#3	#4
902	904	902	904	-0.1	-0.4	-0.6	1.2
901	899	903	899	-0.1	-0.4	-0.6	1.2
905	898	905	902	-0.1	-0.4	-0.6	1.2
902	898	901	901	-0.1	-0.4	-0.7	1.2
908	906	904	904	-0.1	-0.4	-0.7	1.3
904	902	902	904	-0.1	-0.4	-0.7	1.3
906	903	904	904	-0.1	-0.5	-0.7	1.3
		ANA:	LYZE	THE T	EST RE	SULT.	

ANAL

SFDF28259L

Fuel System

ENG	. SP	EED(RPM)	INJECTION QUANITY(MM3)			
#1	#2	#3	#4	#1	#2	#3	#4
902	904	902	904	-0.1	-0.4	-0.6	1.2
901	899	903	899	-0.1	-0.4	-0.6	1.2
905	898	905	902	-0.1	-0.4	-0.6	1.2
902	898	901	901	-0.1	-0.4	-0.7	1.2
908	906	904	904	-0.1	-0.4	-0.7	1.3
904	902	902	904	-0.1	-0.4	-0.7	1.3
906	903	904	904	-0.1	-0.5	-0.7	1.3
	ANALYZE THE TEST RESULT.						
	<< :				VG	Н	ELP

SFDF28260L

SPEED(RPM)650	9 '	750	85	0	95	0	AVG.
#1 CYL.							904
#2 CYL.							902
#3 CYL.							903
#4 CYL.							903
QUANT . (MM3)-4	4	-2	0	2			AVG.
#1 CYL.			Т				-0.10
#2 CYL.		1					-0.35
#3 CYL.			Ϊ.				-0.59
#4 CYL.		سئو	ua)	ان	ωl	w (1.05
				P	REV	H	ELP

*The positive correction value:

->The fuel injection of the cylinder is less than that of other cylinder.

*The negative correction value:

->The fuel injection of the cylinder is more than that of other cylinder.

*Extreme correction value identifies a problematic injector.

After replacing a injector with newone , retest & confirm the engine condition

PREV

SFDF28262L

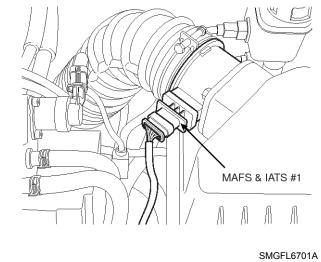
SFDF28261L

MOTICE

- * (+) correction value: Injection quantity is less than the others.
- * (-) correction value: Injection quantity is more than the others.
- * Very high correction value: The injector may have any fault. At this time, replace the injector with a new one and perform these tests again.

FLC-61

Mass Air Flow Sensor (MAFS)


INSPECTION

FUNCTION AND OPERATION PRINCIPLE

MAFS uses a hot-film type sensing element to measure the mass of intake air entering the engine, and send the signal to ECM.

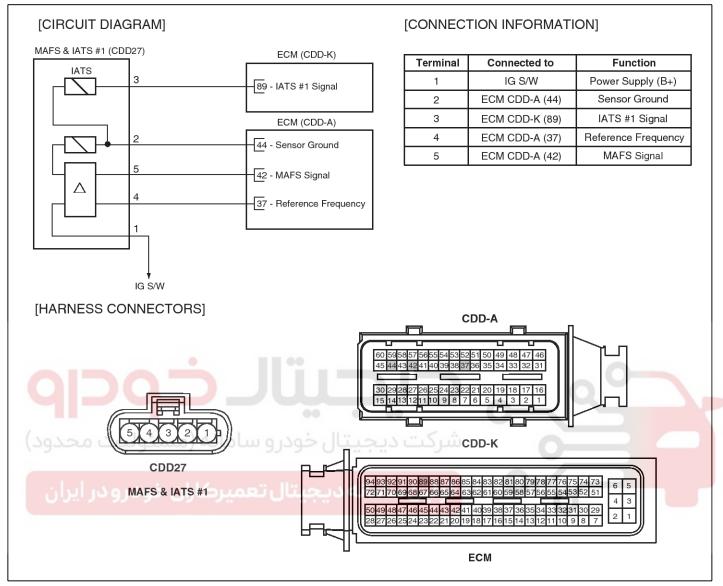
A large amount of intake air represents acceleration or high load conditions while a small amount of intake air represents deceleration or idle.

The ECM uses this information to control the EGR solenoid valve and correct the fuel amount.

SPECIFICATION

*At intake air temperature = 20°C (68°F)

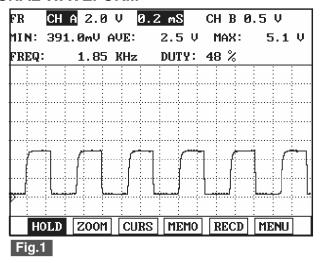
Air Flow (kg/h)	Frequency (kHz)	
8	1.94 ~ 1.96	
10	1.98 ~ 1.99	
15	2.06 ~ 2.07	
مستولين محدود	2.72 ~ 2.75	
160	3.36 ~ 3.41	
ان خود رودر ایران	4.44 ~ 4.53	اله
640	7.66 ~ 8.01	
800	10.13 ~ 11.17	


*At intake air temperature = -15°C(5°F) or 80°C(176°F)

Air Flow (kg/h)	Frequency (kHz)
10	1.97 ~ 1.99
75	2.71 ~ 2.76
160	3.34 ~ 3.43
310	4.39 ~ 4.58

LFIG034A

Fuel System


CIRCUIT DIAGRAM

SFDF38268L

FLC-63

SIGNAL WAVEFORM

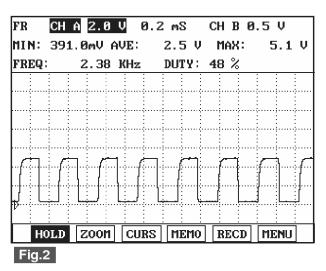


Fig.1) AFS signal waveform at IG KEY "ON". It shows digital signal of 50% duty, 1.8KHz.

Fig.2) AFS signal waveform at idle(790RPM, EGR actuator duty 5%, air flow for each cylinder 410mg/st). It shows digital signal of 50% duty, 2.2~2.7KHz.

LFIG222A

COMPONENT INSPECTION

- 1. Check the MAFS visually.
 - Mounting direction correct.
 - Any contamination, corrosion or damage on connector.
 - Air cleaner's clogging or wet.
 - MAFS cylinder's deforming or blocking by any foreign material.
- Check any leakage on intake system and intercooler system.

Fuel System

REPLACEMENT

ACAUTION

After replacing the Mass Air Flow Sensor (MAFS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

SFDF28235l

5. Select "AIR FLOW SENSOR CHANGE".

MODEL : VEHICLE NAME

SYSTEM : ENGINE(DIESEL)

- 01. ECU CHANGE
- **02. LAMBDA SENSOR CHANGE**
- 03. RAIL PRESSURE SENSOR CHANGE

Ø4. AIR FLOW SENSOR CHANGE

- **05. CPF CHANGE**
- 06. D/PRESSURE SENSOR CHANGE
- 07. SWIRL CONTROL VALUE CHANGE

SFDF28265L

6. Confirm the message, and then press "ENTER" key.

AIR FLOW SENSOR CHANGE

IN THIS MODE, CAN RESET THE STORED DRIFT VALUES OF HOT FILM AIR FLOW SENSOR IN EEPROM.

PRESS [ENTER] KEY.

SFDF28266L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

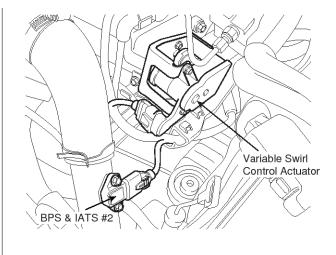
AIR FLOW SENSOR CHANGE

IN THIS MODE CAN RESET THE STORED COMPLETED! AFTER 10 SEC. OR MORE SINCE IG.KEY OFF, TURN IG.KEY ON

PRESS [ENTER] KEY.

SFDF28267L

8. Wait for more than 10 seconds, and then turn ignition switch ON.

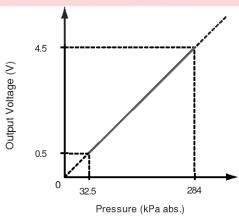

FLC-65

Boost Pressure Sensor (BPS)

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

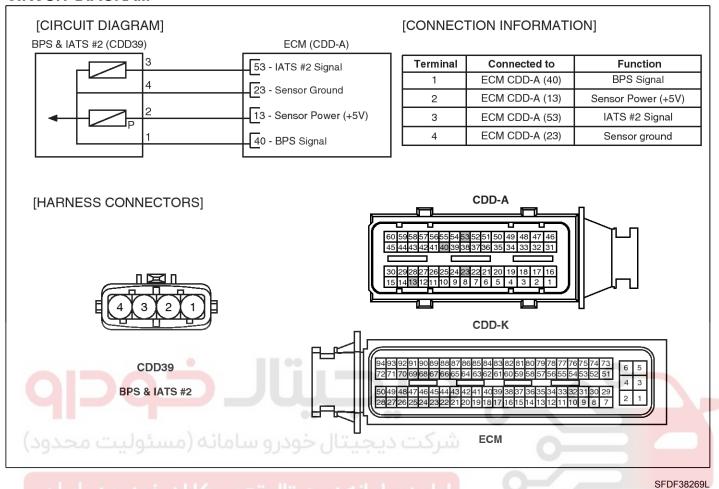
Boost pressure sensor (BPS) is installed on surge tank to measure the absolute intake manifold pressure. BPS input voltage is changed in proportion with absolute pressure in manifold. This information is used to control Variable Geometery Turbocharger (VGT) by ECM.



SUNFL6002L

SPECIFICATION

Pressure (kPa)	Output Voltage (V)
32.5	0.5
70	1.02 ~ 1.17
140	2.13 ~ 2.28
210	3.25 ~ 3.40
یتال خودرو سامانه ₍₂₇₀ سئولیت محدود)	4.20 ~ 4.35
284	4.5



LFIG038A

Fuel System

CIRCUIT DIAGRAM

SIGNAL WAVEFORAM

Boost Pressure Sensor Signal

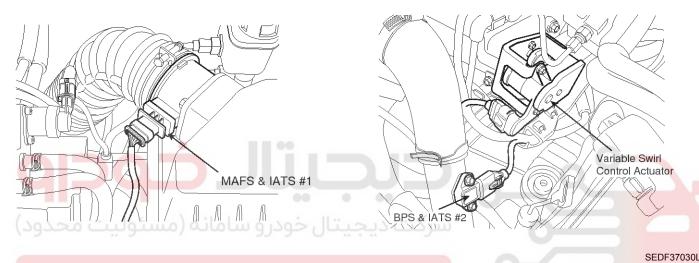
HOLD ZOOM CURS MEMO RECD MENU

This illustration represents waveform of BPS when accelerating and decelerating.

LFIG040A

FLC-67

Intake Air Temperature Sensor (IATS)


INSPECTION

FUNCTION AND OPERATION PRINCIPLE

Intake Air Temperature Sensor (IATS) uses a Negative Temperature Characteristics (NTC) thermistor and senses intake air temperature. Two intake air temperature sensors are installed in this engine.

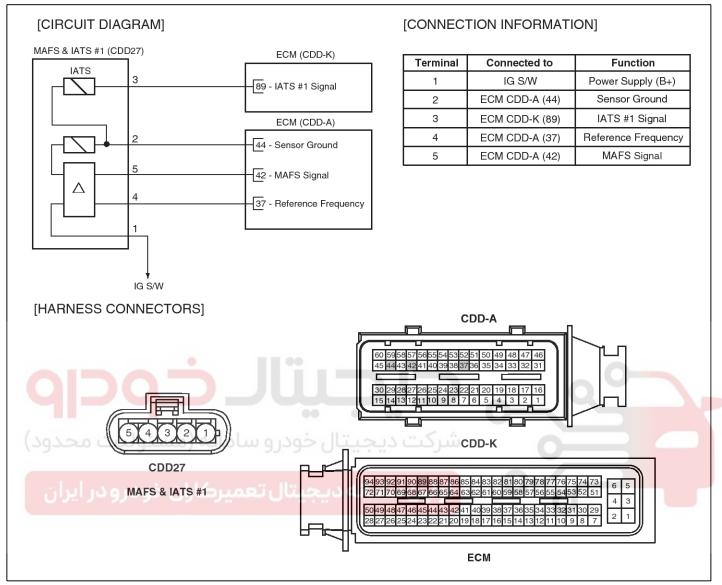
IATS #1 in Mass Air Flow Sensor (MAFS) and IATS #2 in Boost Pressure Sensor (BPS) are located in front of and behind turbo-charger respectively. IATS #1 senses air temperature entering turbo-charger and the other (IATS #2) does air temperature coming out from the turbo-charger.

Comparing these air temperature values from both sensors, more accurate sensing of intake air temperature is possible. ECM uses these air temperature signals to perform EGR control correction and fuel injection quantity correction.

اولین سامانه دیجیتال تعمیرکاران خود SPECIFICATION

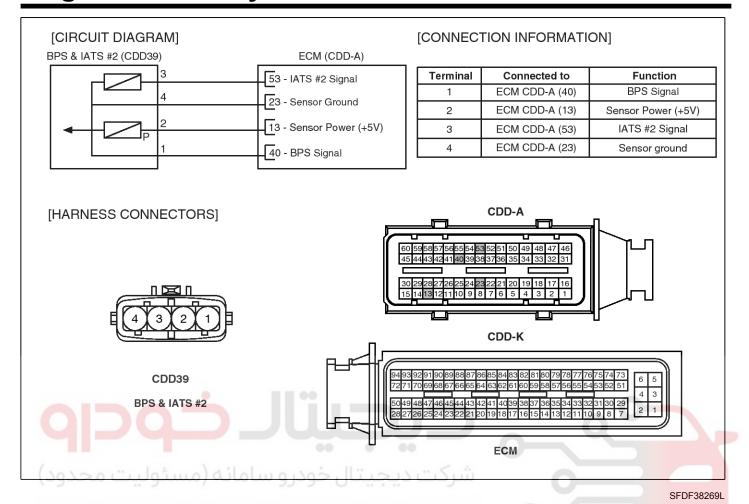
IATS #1 in MAFS

Temperature [°C(°F)]	Resistance (kΩ)
-40(-40)	35.14 ~ 43.76
-20(-4)	12.66 ~ 15.12
0(32)	5.12 ~ 5.89
20(68)	2.29 ~ 2.55
40(104)	1.10 ~ 1.24
60(140)	0.57 ~ 0.65
80(176)	0.31 ~ 0.37

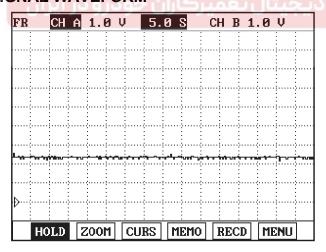

IATS #2 in BPS

Temperature [°C(°F)]	Resistance (kΩ)
-40(-40)	40.93 ~ 48.35
-20(-4)	13.89 ~ 16.03
0(32)	5.38 ~ 6.09
20(68)	2.31 ~ 2.57
40(104)	1.08 ~ 1.21
60(140)	0.54 ~ 0.62
80(176)	0.29 ~ 0.34

LFIG042A


Fuel System

CIRCUIT DIAGRAM



SFDF38268L

FLC-69

SIGNAL WAVEFORM

IATS signal should be smooth and continuous without any sudden changes.

After warmed-up, the IATS signal should not change significantly while ECTS signal drops.

LFIG043A

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the MAFS (for IATS #1) or BPS (for IATS #2) connector.
- 3. Measure resistance between IATS signal terminal and sensor ground terminal.

4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

Fuel System

REPLACEMENT

CAUTION

After replacing the Intake Air Temperature Sensor (IATS) #1, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT\CONV.)

SFDF28235L

5. Select "AIR FLOW SENSOR CHANGE".

MODEL : VEHICLE NAME
SYSTEM : ENGINE(DIESEL)

- 01. ECU CHANGE
- **02. LAMBDA SENSOR CHANGE**
- 03. RAIL PRESSURE SENSOR CHANGE

04. AIR FLOW SENSOR CHANGE

- 05. CPF CHANGE
- 06. D/PRESSURE SENSOR CHANGE
- 07. SWIRL CONTROL VALUE CHANGE

SFDF28265L

6. Confirm the message, and then press "ENTER" key.

AIR FLOW SENSOR CHANGE

IN THIS MODE, CAN RESET THE STORED DRIFT VALUES OF HOT FILM AIR FLOW SENSOR IN EEPROM.

PRESS [ENTER] KEY.

SFDF28266L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

AIR FLOW SENSOR CHANGE

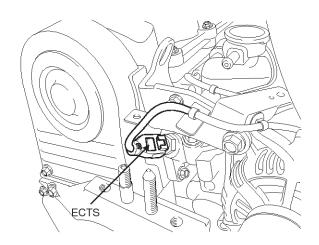
IN THIS MODE CAN RESET THE STORED COMPLETED! AFTER 10 SEC. OR MORE SINCE IG.KEY OFF, TURN IG.KEY ON

PRESS [ENTER] KEY.

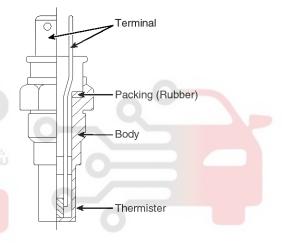
SFDF28267L

8. Wait for more than 10 seconds, and then turn ignition switch ON.

FLC-71


Engine Coolant Temperature Sensor (ECTS)

INSPECTION


FUNCTION AND OPERATION PRINCIPLE

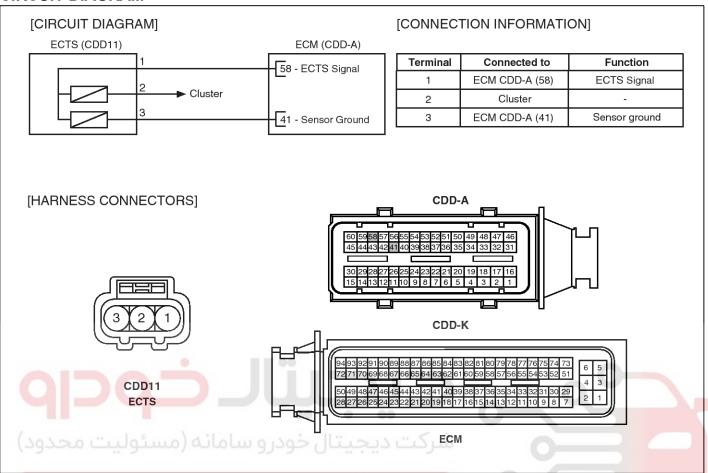
Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5V in the ECM is supplied to the ECTS via a resistor in the ECM.

That is, the resistor in the ECM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the ECM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

SUNFL6003D

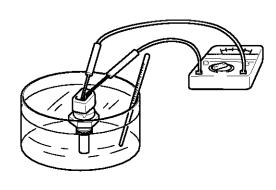
FGRF241A

دیجیتال خودرو سامانه (مسئولیت محدود


اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

SPECIFICATION

Temperature [˚ℂ(˚F)]	Resistance(^{kΩ})
-40(-40)	48.14
-20(-4)	14.13 ~ 16.83
0(32)	5.79
20(68)	2.31 ~ 2.59
40(104)	1.15
60(140)	0.59
80(176)	0.32


Fuel System

CIRCUIT DIAGRAM

COMPONENT INSPECTION

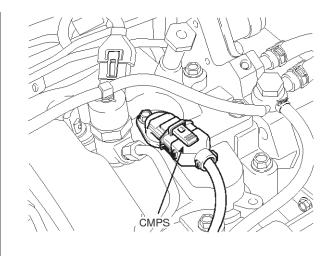
- 1. Turn ignition switch OFF.
- 2. Disconnect the engine coolant temperature sensor connector.
- 3. Remove the sensor.
- After immersing the thermistor of the sensor into engine coolant, measure resistance between ECTS signal terminal and ground terminal.

EFNF541A

SFDF38270L

5. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".


FLC-73

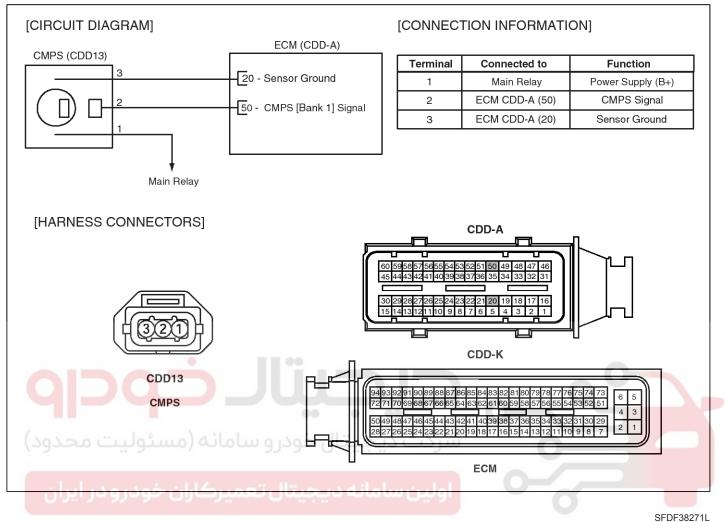
Camshaft Position Sensor (CMPS)

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

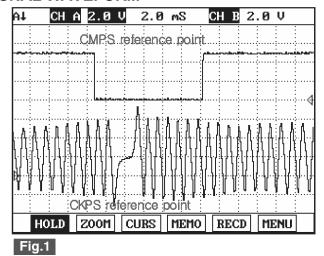
Camshaft Position Sensor (CMPS) is a hall sensor and detects the camshaft position by using a hall element. It is related with Crankshaft Position Sensor (CKPS) and detects the piston position of the each cylinder which the CKPS can't detect. The CMPS are installed on engine head cover and uses a target wheel installed on the camshaft. This sensor has a hall-effect IC which output voltage changes when magnetic field is made on the IC with current flow. So the sequential injection of the 4 cylinders is impossible without CMPS signal.

LFIG010A


SPECIFICATION

Level	Output Pulse (V)
High	12V
Low	0V
Items	Specification
Air Gap	1.5 ± 0.1 mm

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران


Fuel System

CIRCUIT DIAGRAM

FLC-75

SIGNAL WAVEFORM

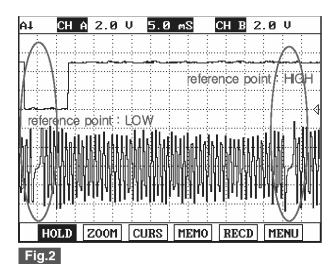


Fig.1) This shows waveform of Crank Shaft Position Sensor and Cam Shaft Position Sensor simulatneously. The middle area indicates reference points of Crank Shaft Position Sensor and Cam Shaft Position Sensor.

Fig.2) Crank Shaft Position Sensor and Cam Shaft Position Sensor signal are measured simultaneously.

Cam Shaft Position Sensor

signal is outputted once when Crank Shaft Position sensor signal is outputted twice. LOW and HIGH output of Cam Shaft Position sensor reference point is detected at Crank Shaft Position sensor reference point.

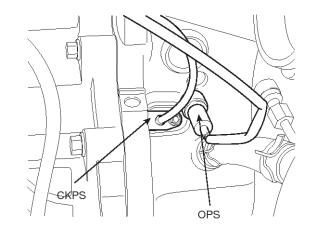
(Injection sequence is determined based on LOW and HIGH signal of Cam Shaft Position Sensor reference point as detecting cylinder position.)

LFIG299A

COMPONENT INSPECTION

 Check signal waveform of CMPS and CKPS using a scan tool.

Specification: Refer ro "SIGNAL WAVEFORM"

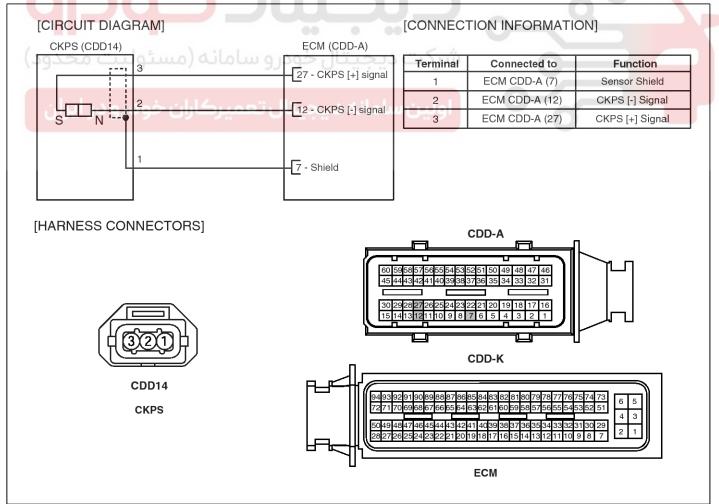

Fuel System

Crankshaft Position Sensor (CKPS)

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

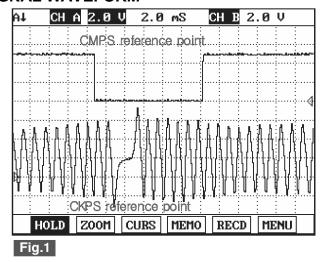
Piston position on combustion chamber is the substantial to define the starting of injection timing. All engine pistons are connected to crankshaft by connecting rod. Sensor on crankshaft can supply the informations concerning all piston positions, revolution speed is defined by revolution perminute of crankshaft. Prior input variable is determined at ECM by using signal induced from crankshaft position sensor.



SUNFL6004D

SPECIFICATION

Items	Specification
Coil Resistance (Ω)	774 ~ 946Ω [20 ℃ (68°F)]


CIRCUIT DIAGRAM

FLC-77

SFDF38272L

SIGNAL WAVEFORM

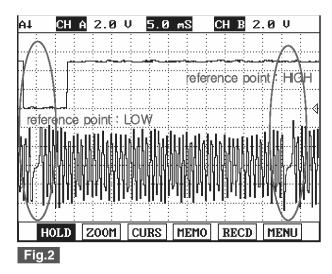


Fig. 1) This shows waveform of Crank Shaft Position Sensor and Cam Shaft Position Sensor simulatneously. The middle area indicates reference points of Crank Shaft Position Sensor and Cam Shaft Position Sensor.

Fig.2) Crank Shaft Position Sensor and Cam Shaft Position Sensor signal are measured simultaneously.

Cam Shaft Position Sensor

signal is outputted once when Crank Shaft Position sensor signal is outputted twice. LOW and HIGH output of Cam Shaft Position sensor reference point is detected at Crank Shaft Position sensor reference point.

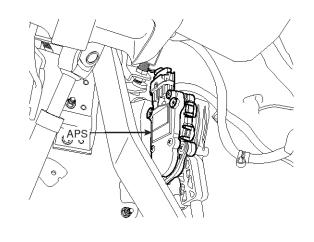
(Injection sequence is determined based on LOW and HIGH signal of Cam Shaft Position Sensor reference point as detecting cylinder position.)

LFIG299A

COMPONENT INSPECTION

 Check signal waveform of CMPS and CKPS using a scan tool.

Specification: Refer ro "SIGNAL WAVEFORM"

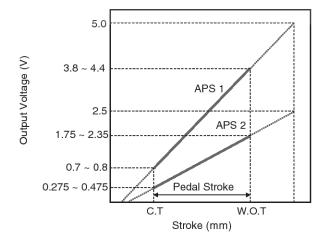

Fuel System

Accelerator Position Sensor (APS)

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

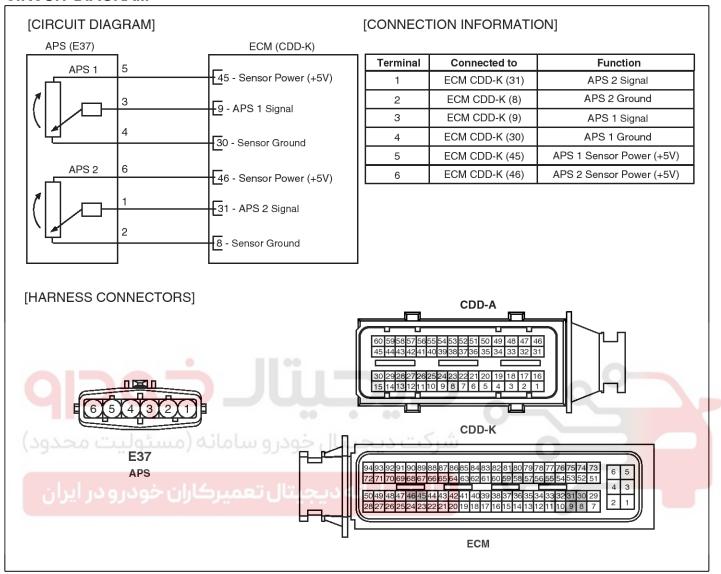
On electronic injection systems, there is no longer a load lever that mechanically controls the fuelling. The flow is caculated by the ECM depending on a number of parameters, including pedal position, which is measured using a potentiometer. The pedal sensor has two potentio-meters whoses slides are mechanically solid. The two potentiometers are supplied from distinct and different power sources so there is built in redundancy of information giving reliable driver's request information. A voltage is generated across the potentiometer in the acceleration position sensor as a function of the accelerator-pedal setting. Using peogrammed characteristic curve, the pedal's position is then calculated from this voltage.



SHDF26007D

SPECIFICATION

Took Condition	Outpu	t Voltage(V)
Test Condition	APS 1	APS 2
Idle	0.7 ~ 0.8	0.275 ~ 0.475
Fully depressed	3.8 ~ 4.4	1.75 ~ 2.35


Itoms	Specification	
Items	APS 1	APS 2
Potentiometer Resistance (k\O)	0.7 ~ 1.3	1.4 ~ 2.6

LFIG092A

FLC-79

CIRCUIT DIAGRAM

SFDF38273L

Fuel System

SIGNAL WAVEFORM

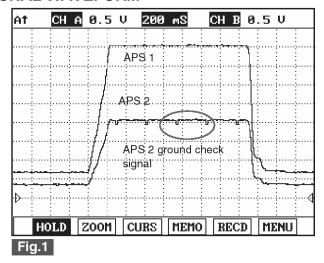


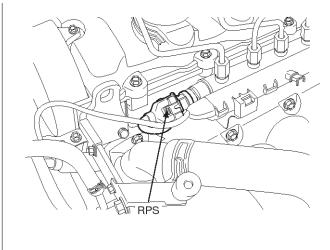
Fig.1) APS 1 and APS 2 signals are measured simultaneously, Check if output value is rising and APS 2 is 1/2 of APS 1 signal.

LFIG541A

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the accelerator position sensor connector.
- 3. Measure resistance between voltage supply terminal and ground terminal of APS1.
- 4. Measure resistance between voltage supply terminal and ground terminal of APS2.
- 5. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

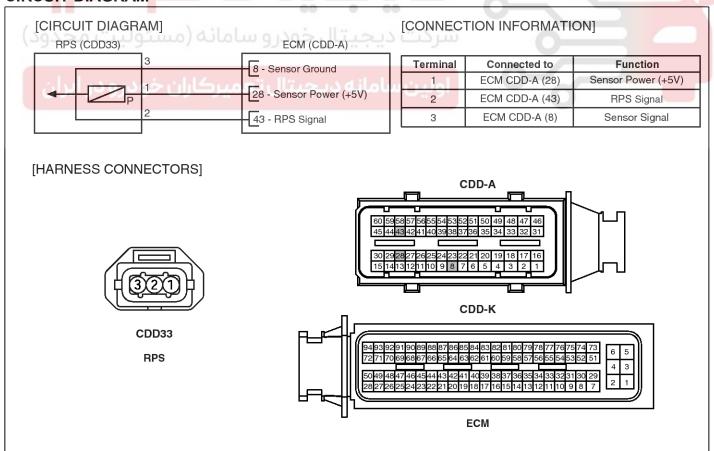

FLC-81

Rail Pressure Sensor (RPS)

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

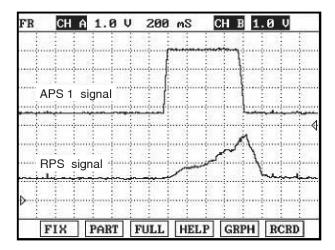
Rail Pressure Sensor (RPS) is installed at the end of the common rail and measures the instantaneous fuel pressure in the common rail by using its diaphragm. Its sensing element (semiconductor device) mounted on the diaphragm converts the fuel pressure to an electric signal.



LFIG017A

SPECIFICATION

Test Condition	Rail pressure (bar)	Output Voltage (V)
Idle	220 ~ 320	Below 1.7
Fully depressed	1,800	Approx. 4.5


CIRCUIT DIAGRAM

SFDF38274L

Fuel System

SIGNAL WAVEFORM

Rail Pressure Sensor (RPS) is to provide to the ECM the voltage signal corresponding to rail pressure.

The change in resistance is preportional to the rail pressure acting upon the diaphragm and rail pressure increases as load increases.

EFNF550A

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FLC-83

REPLACEMENT

ACAUTION

After replacing the Rail Pressure Sensor (RPS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

SFDF28235L

5. Select "RAIL PRESSURE SENSOR CHANGE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- 01. ECU CHANGE
- 02. LAMBDA SENSOR CHANGE

03. RAIL PRESSURE SENSOR CHANGE

- 04. AIR FLOW SENSOR CHANGE
- **05. CPF CHANGE**
- 06. D/PRESSURE SENSOR CHANGE
- 07. SWIRL CONTROL VALUE CHANGE

SFDF28274L

6. Confirm the message, and then press "ENTER" key.

RAIL PRESSURE SENSOR CHANGE(RPS)

IN THIS MODE, CAN SET THE FMA(FUEL MEAN ADAPTATION) VALUES AND ZERO SET THE OPERATION TIME FOR THE CHANGED RAIL PRESSURE SENSOR.

PRESS [ENTER] KEY.

SFDF28275L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

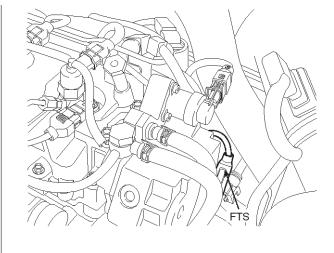
RAIL PRESSURE SENSOR CHANGE(RPS)

T SINCE IG.KEY OFF, TURN IG.KEY ON

PRESS [ENTER] KEY.

SFDF28276L

8. Wait for more than 10 seconds, and then turn ignition switch ON.


Fuel System

Fuel Temperature Sensor (FTS)

INSPECTION

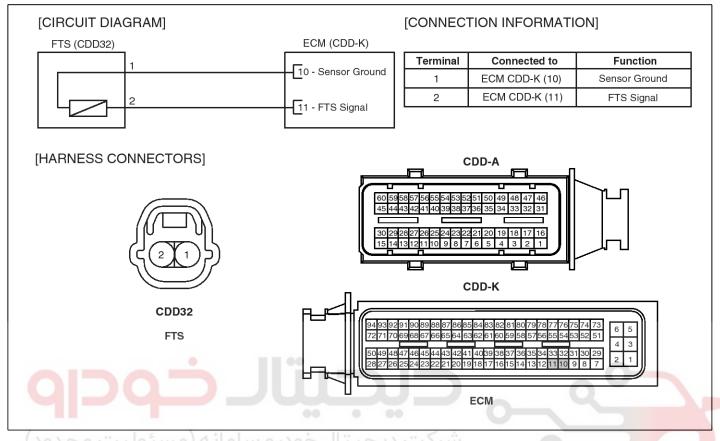
FUNCTION AND OPERATION PRINCIPLE

Fuel Temperature Sensor(FTS) is installed in fuel supplying line and senses the termperature of fuel supplied to high pressure pump. Fuel temperature is limmited to protect fuel such as high pressure pump and injectors from damages due to rapid deterioration by vapor-lock which can occur at high temperature or destruction of oil membrance.

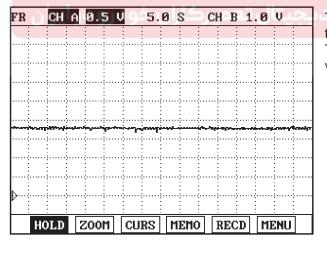
LFIG051A

SPECIFICATION

Temperature [°C(°F)]	Resistance (kΩ)
-30 (-22)	27.00
-20 (-4)	15.67
-10 (14)	9.45
0 (32)	5.89
20 (68)	2.27 ~ 2.73


Temperature [℃(°F)]	Resistance (kΩ)
40 (104)	1.17
50 (122)	0.83
60 (140)	0.60
70 (158)	0.43
80 (176)	0.30 ~ 0.32

LFIG052A


ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FLC-85

CIRCUIT DIAGRAM

SIGNAL WAVEFORM

This illustration shows the waveform of fuel temperature sensor at 50 ℃.

The higher fuel temperature rises, the lower signal voltage becomes.

LGJF502I

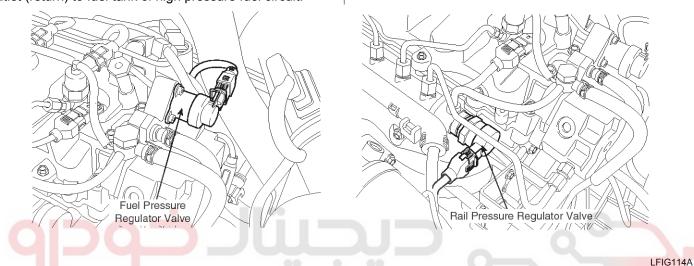
SFDF38275L

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the fuel temperature sensor connector.
- 3. Measure resistance between sensor signal terminal and ground terminal.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

Fuel System

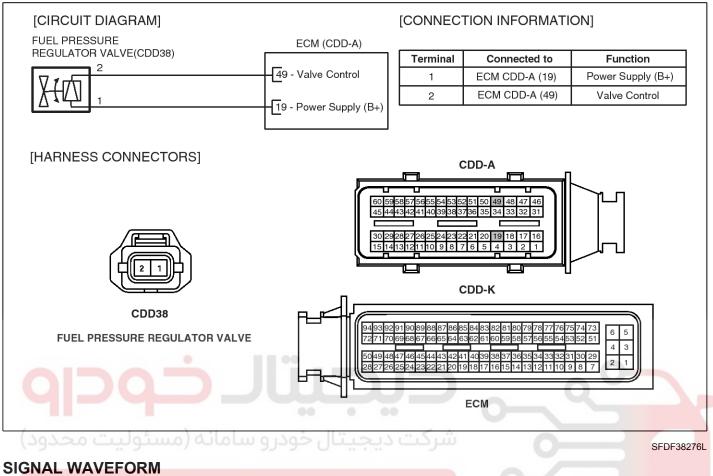

Fuel Pressure Control Valve

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

The Fuel Pressure Regulator Valve and the Rail Pressure Regulator Valve are installed on high pressure pump and common rail respectively. These valves control fuel inlet (feed) from fuel tank via fuel filter and outlet (return) to fuel tank of high pressure fuel circuit.

This system is called "Dual Fuel Pressure Control System" and can precisely and quickly control the fuel pressure in accordance with various engine conditions by controlling the fuel inlet and outlet simultaneously.



SPECIFICATION

or Edit Idation		
Items	Specification	
Coil Resistance (Ω)	2.6 ~ 3.15Ω [20°C (68°F)]	

FLC-87

CIRCUIT DIAGRAM

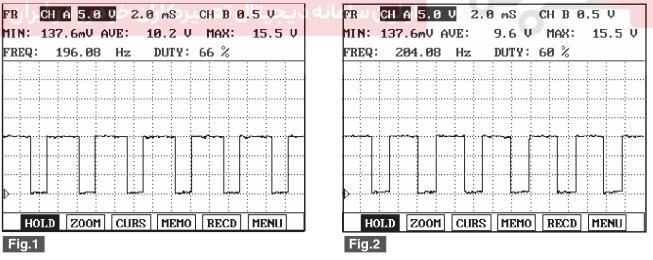


Fig.1) Waveform of fuel pressure regulator valve at idle. It shows approx. 34% duty((-)duty).

Fig.2) Waveform of fuel pressure regulator valve as accelerating. approx. 38% duty((-)duty) is outputted as engine load increases.

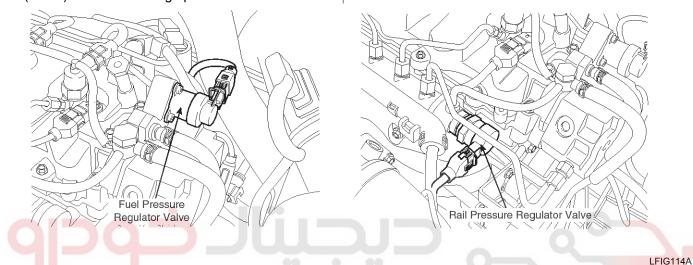
LFIG396A

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the fuel pressure regulator valve connector.
- 3. Measure resistance between terminal 1 and 2 of the
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

Fuel System


Rail Pressure Regulator Valve

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

The Fuel Pressure Regulator Valve and the Rail Pressure Regulator Valve are installed on high pressure pump and common rail respectively. These valves control fuel inlet (feed) from fuel tank via fuel filter and outlet (return) to fuel tank of high pressure fuel circuit.

This system is called "Dual Fuel Pressure Control System" and can precisely and quickly control the fuel pressure in accordance with various engine conditions by controlling the fuel inlet and outlet simultaneously.

SPECIFICATION

GI EGII IGATICIA		
Items	Specification	
Coil Resistance (Ω)	3.42 ~ 3.78Ω [20°C (68°F)]	

FLC-89

CIRCUIT DIAGRAM

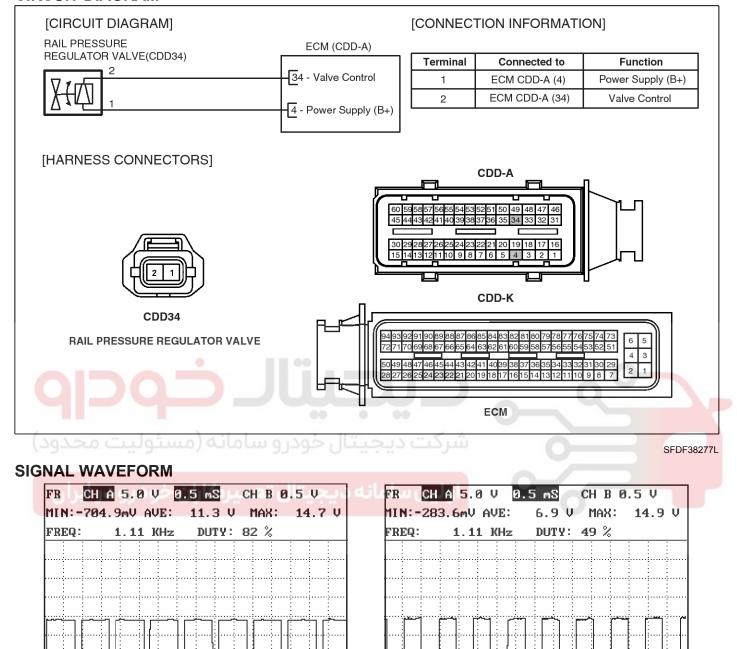


Fig.1) Waveform of rail pressure regulator valve at idle. It shows approx. 17% duty((-) duty.

RECD

Fig.2) Waveform of rail pressure regulator valve as accelerating. Approx. 50% duty is outputted as engine load increases. (When rail pressure increases as accelerating, rail pressure regulator valve duty(current) rises.)

HOLD

Fig.2

ZOOM

CURS

MEMO

RECD

LFIG377A

HOLD

Fig.1

ZOOM

CURS

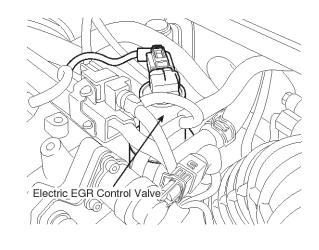
MEMO

Fuel System

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the rail pressure regulator valve connector.
- 3. Measure resistance between terminal 1 and 2 of the valve.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

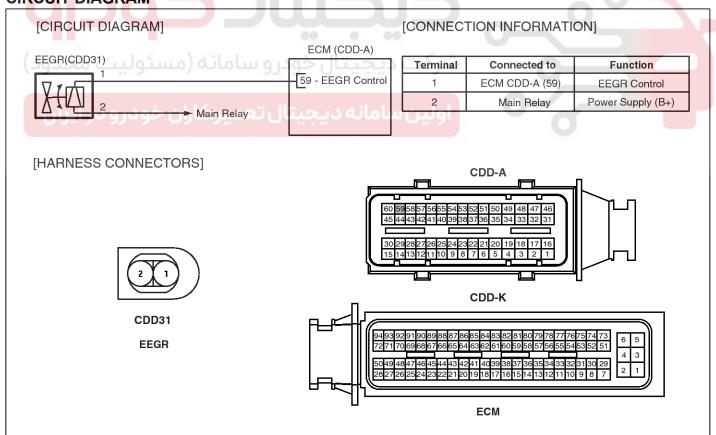

FLC-91

EGR (Exhaust Gas Recirculation) Valve

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

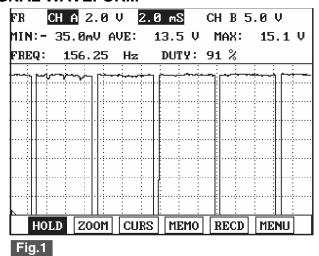
The Exhaust Gas Recirculation (EGR) system is used to add the exhaust gas to intake air in order to reduce an excess of air and the temperature in the combustion chamber. The Electric EGR valve is controlled by ECM's duty control signal depending on engine load and the need of intake air and is operated by solenoid valve not vacuum valve.



SUNFL6010L

SPECIFICATION

Items	Specification
Coil Resistance (Ω)	7.3 ~ 8.3Ω [20℃(68°F)]


CIRCUIT DIAGRAM

SFDF38278L

Fuel System

SIGNAL WAVEFORM

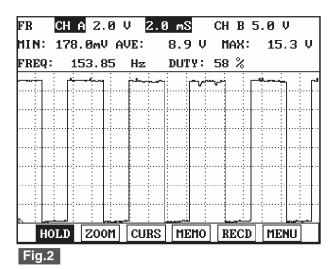


Fig.1) Approx. 10% duty((-)duty) signal waveform of EEGR actuator (with EEGR valve closed)

Fig.2) Approx. 40% duty((-)duty) signal waveform of EEGR actuator(with EEGR valve opened)

LFIG414A

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the electric EGR control valve connector.
- 3. Measure resistance between terminal 1 and 2 of the
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

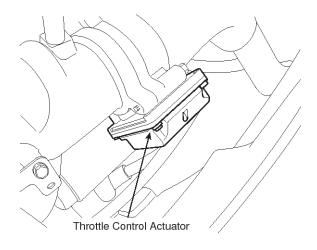
ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FLC-93

Throttle Flap Control Solenoid Valve

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

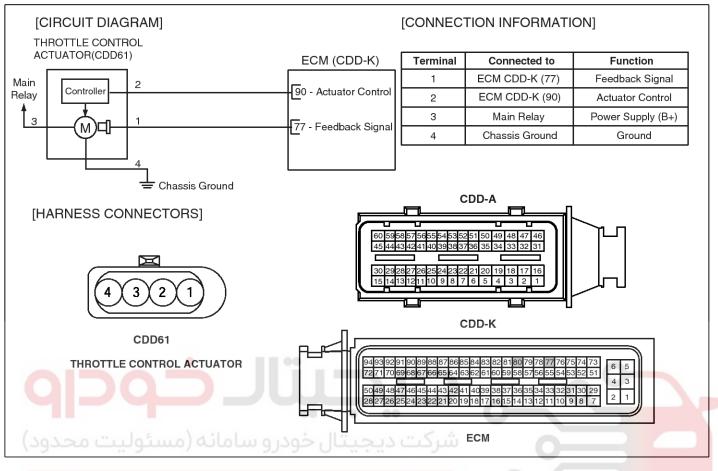

The Throttle Control Actuator is mounted on throttle body of diesel engine and controls throttle valve according to PWM (Pulse With Modulation) signal from ECM.

It consists of:

- a DC motor which actuates the throttle valve.
- a 2-step gear (transmission ratio = 1:40) which is located in between the DC motor and the throttle valve and increases torque of the DC motor,
- a position sensor which is a hall-effect sensor and detects status of the throttle valve.
- an electric control unit which is a micro-controller and drives the DC motor by the PWM (Pulse With Modulation) signal from the ECM,
- and a reset spring which resets the de-energized throttle valve to its open position.

Its function is described below:

- Anti-judder function: When engine is shut off, the ECM can prevent intake air from entering to intake manifold by fully closing the throttle valve for 1.5 seconds (95% < Duty < 97%) to reduce engine vibration.
- 2. Intake air control for EGR: When exhaust gas pressure is equal to or lower than intake air pressure (for example, when low engine speed), the exhaust gas would not enter to the intake manifold. At this time, the ECM partially closes the throttle valve (5% < Duty < 94%) to reduce the intake air quantity. The intake air pressure thus is lower than the exhaust gas pressure.</p>
- 3. Exhaust gas temperature control for CPF regeneration: When the Catalyzed Particulate Filter (CPF) is need to regenerate, the ECM partially closes the throttle valve (5% < Duty < 94%) to reduce the intake air quantity. At this time, the air-fuel ratio would become rich and the exhaust gas temperature would be high enough to burn the soot inside the CPF.


LFIG021A

SPECIFICATION

Duty (%)	Throttle Valve Position
5	Open
5 ~ 94	Normal operation (Partially open in proportion to duty value)
94	Closed
94 ~ 95	Maintaining the last valid position
95 ~ 97	Fully closed

Fuel System

CIRCUIT DIAGRAM

SIGNAL WAVEFORM

AT CH A 2.0 V 1.0 mS CH B 0.5 V
MIN:- 35.0mV AVE: 604.0mV MAX: 13.3 V
FREQ: 250.00 Hz DUTY: 5%

HOLD ZOOM CURS R-ST RECD MENU
Fig.1

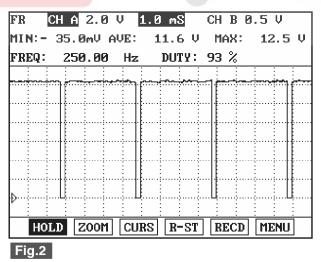


Fig.1) Waveform of Throttle control actuator at wide open(at idle): At IG KEY "ON", ENGINE "ON", 5% duty is outputted continuously.

Fig.2) Waveform of Throttle control actuator at closed position : At IG KEY "OFF", 93% duty is outputted for about 1 sec.

LFIG529A

SFDF38279L

FLC-95

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the electric throttle control actuator connector.
- 3. Measure resistance between terminal 1 and 2 of the valve.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

Fuel System

Variable Swirl Actuator

DESCRIPTION

Variable Swirl Control Actuator consists of DC motor and position sensor which detects the position of the swirl valve.

At idle or below 3,000rpm, the swirl valve is closed. This swirl effect increases air flow rate.

SZZF19100D

	Low and Middle Load	High Load
Engine speed	Below 3000rpm	Above 3000rpm
Valve operation	CLOSE	OPEN
Description illustration		
Fail-safe	Fully ope	ened

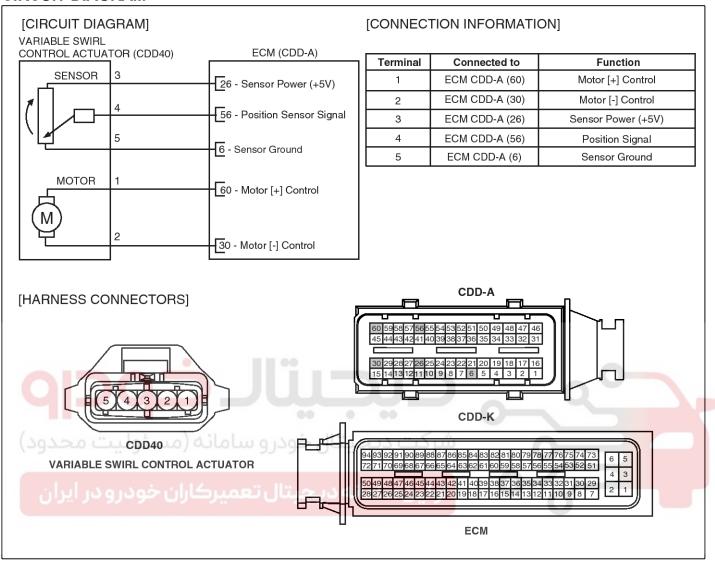
MOTICE

To prevent the swirl valve and the shaft from being stuck by foreign material and to learn max opening and closing position of the valve, the ECM fully opens and closes the valve twice when engine is being stopped.

SPECIFICATION

Motor

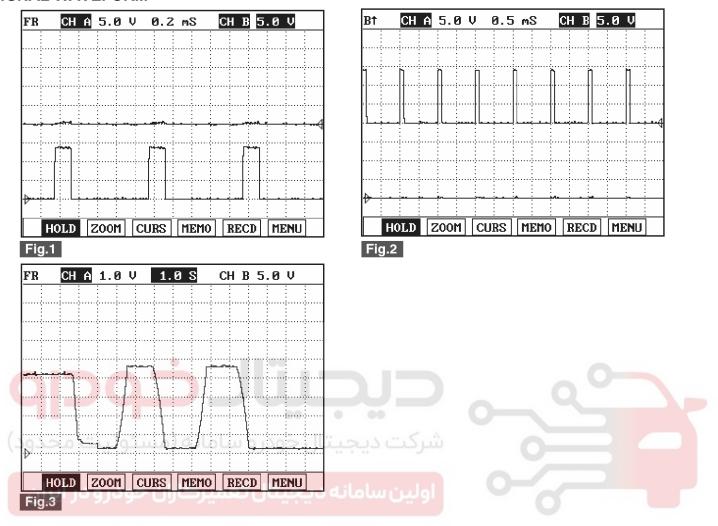
Items	Specification
Coil Resistance (Ω)	3.4 ~ 4.4 Ω [20℃(68°F)]


Position Sensor

Items	Specification
Coil Resistance (Ω)	3.44 ~ 5.16Ω [20℃(68°F)]

LFIG058A

FLC-97


CIRCUIT DIAGRAM

SFDF38280L

Fuel System

SIGNAL WAVEFORM

- Fig.1) Waveform when variable swirl valve closed at idle. Terminal 1 is (+) and 2 is (-).
- Fig. 2) Waveform when variable swirl valve opened at above 3000RPM. Terminal 1 is (-) and 2 is (+).
- Fig. 3) Waveform of variable swirl control actuator motor position sensor at the point of turning engine OFF.
 - 4.3V at swirl valve closed and 0.3V at swirl valve opened. Swirl valve is opened and closed twice at engine "OFF".

LFIG512A

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the variable swirl control actuator connector.
- 3. Check that swirl valve is stuck by foreign material.
- 4. Measure resistance between motor (+) and (-) control terminals.

Specification: Refer to "SPECIFICATION".

- 5. Measure resistance between voltage supply terminal and ground terminal of position sensor.
- 6. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

FLC-99

REPLACEMENT

ACAUTION

After replacing the Variable Swirl Control Actuator, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

SFDF28235L

Select "SWIRL CONTROL VALVE CHANGE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- 01. ECU CHANGE
- 02. LAMBDA SENSOR CHANGE
- 03. RAIL PRESSURE SENSOR CHANGE
- 04. AIR FLOW SENSOR CHANGE
- 05. CPF CHANGE
- 06. D/PRESSURE SENSOR CHANGE

07. SWIRL CONTROL VALVE CHANGE

SFDF28283L

Confirm the message, and then press "ENTER" key.SWIRL CONTROL VALUE CHANGE

IN THIS MODE, CAN INITIATE OFFSET LEARNING FOR NEW VARIABLE SWIBL ACTUATOR.

PRESS [ENTER] KEY.

SFDF28284L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

SWIRL CONTROL VALVE CHANGE

IN THIS MODE, CAN INITIATE OFFSET
FARMING FOR NEW WARLARDE SWIRT
COMPLETED! AFTER 10 SEC. OR MORE

SINCE IG.KEY OFF, TURN IG.KEY ON

SFDF28285L

8. Wait for more than 10 seconds, and then turn ignition switch ON.

Fuel System

REMOVAL

- 1. Disconnect the battery (-) terminal.
- 2. Mark painting on the top (A) of the variable swirl actuator coupling of the intake manifold side.

SZZF19101D

- 3. Disconnect the variable swirl actuator connector (A).
- 4. Remove the variable swirl actuator (C) after removing the installation bolt (B).

INSTALLATION

1. Installation is the reverse order of removal.

Variable swirl actuator installation bolt: 9.8 \sim 11.8 N.m (1.0 \sim 1.2 kgf.m, 7.2 \sim 8.7 lb-ft)

ACAUTION

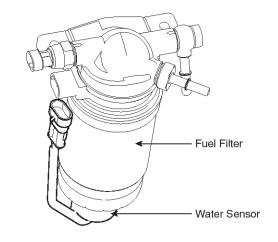
If the coupling of the intake manifold side is rotated a 180-degree turn, a real gap between the port and the flap in the intake manifold may be different from measuring it.

Install the actuator after confirming the mark on the top of the coupling.

2. Confirm normal operation of the actuator more than 3 times when the ignition switch OFF after full warm up (Engine Coolant Temperature > 70 °C).

FLC-101

Water Sensor

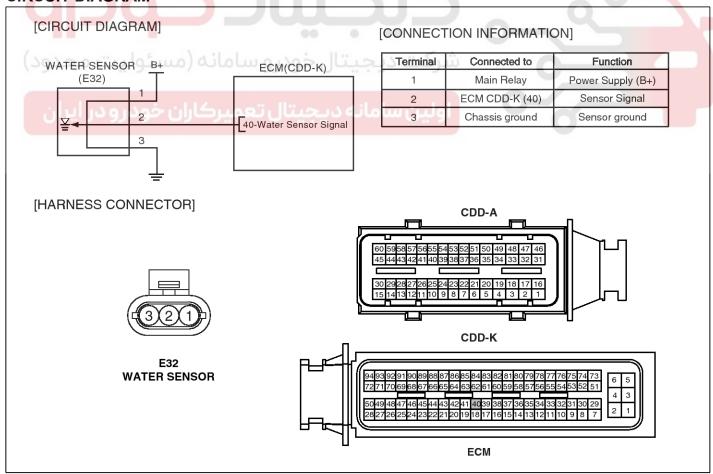

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

Water Sensor is installed on bottom end of fuel filter and detects presence of water in fuel. When the water level reaches the lower level of the upper electrode, the "WATER" lamp in cluster should flash. If the water level decreases below the lower electrode, the lamp should turn off.

MOTICE

Without presence of water, the lamp should flash for 2 seconds and turn off afterward in order that this system has normal condition.



SFDF38264L

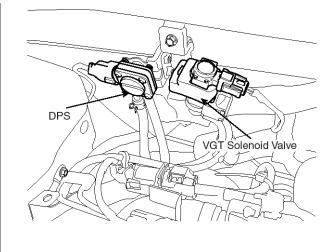
SPECIFICATION

Item	Specification
Warning Level (cc)	40 ~ 60

CIRCUIT DIAGRAM

SFDF38281L

Fuel System

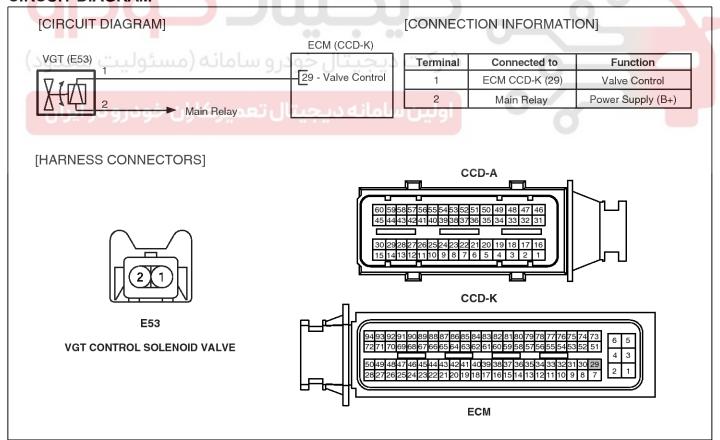

VGT Control Solenoid Valve

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

Variable Geometry Turbo-charger (VGT) is used to charge additional air into combustion chamber for improvement of combustion efficiency.

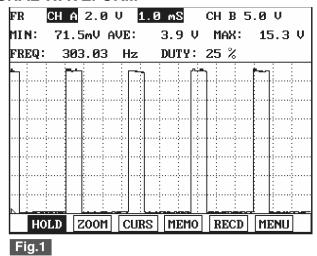
ECM controls the VGT with controlling duty of the VGT control solenoid valve according to engine load.



SMGFL6144L

SPECIFICATION

Items	Specification
Coil Resistance (Ω)	14.7 ~ 16.1Ω [20℃(68°F)]


CIRCUIT DIAGRAM

SFDF38282L

FLC-103

SIGNAL WAVEFORM

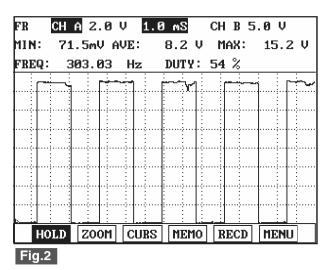


Fig.1) VGT actuator output waveform at 76% duty((-)duty. Duty decreases as boost pressure increases.

Fig.2) VGT actuator duty((-)duty) decreases as accelerating.

LFIG369A

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the VGT control solenoid valve connector.
- 3. Measure resistance between terminal 1 and 2 of the
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

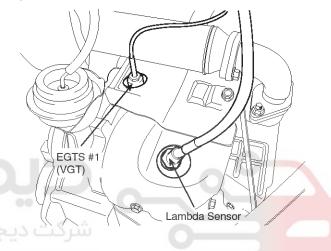
ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Fuel System

Heated Oxygen Sensor (HO2S)

INSPECTION

Sensor


FUNCTION AND OPERATION PRINCIPLE

Lambda Sensor is installed on exhaust manifold and is a linear oxygen sensor. It senses oxygen density of exhaust gas in order to control EGR acculately through fuel correction and also limits smoke which is generated by reach air-fuel mixture at high engine load condition. ECM controls pumping current in order to fit λ -value from linear lambda sensor to 1.0.

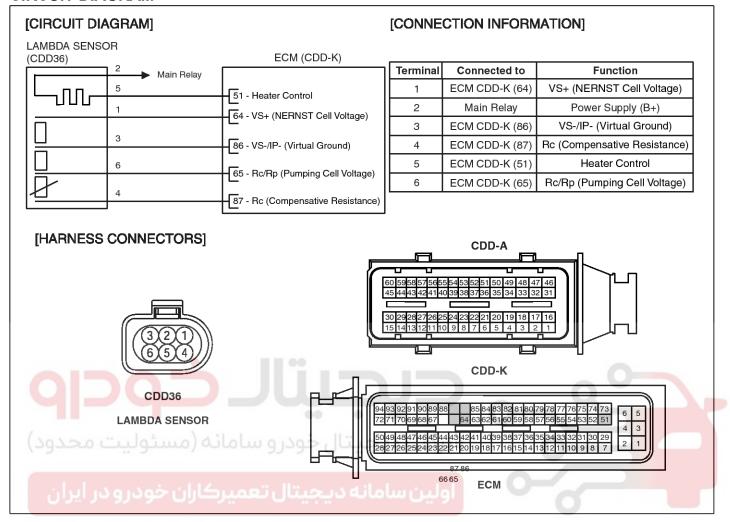
Lean air-fuel mixture(1.0 $\le \lambda \le 1.1$): ECM supplies pumping current to lambda sensor (+pumping current) and activates it for lambda sensor to have the characteristic at λ =1.0 (0.0 pumping current). With the value of pumping current supplied to lambda sensor, ECM detects lambda density of exhaust gas.

Rich air-fuel mixture(0.9 < λ < 1.0): ECM takes away pumping current from lambda sensor (-pumping current) and deactivates it for lambda sensor to have the characteristic at λ =1.0 (0.0 pumping current). With the value of pumping current taken away from lambda sensor, ECM detects lambda density of exhaust gas.

This performance is the most active and fast at normal operating temperature ($450^{\circ}\text{C} \sim 600^{\circ}\text{C}$) thus, in order to reach normal operating temp. and last at that temperature, a heater (heating coil) is integrated with lambda sensor. The heater coil is controlled by ECM as Pulse With Modulator (PWM). The resistance of heater coil is low when coil is cold thus, current through it increases while resistance is high when coil is hot thus, current decreases. With this principle, temperature of lambda sensor is measured and lambda sensor heater operation varies based on the data.

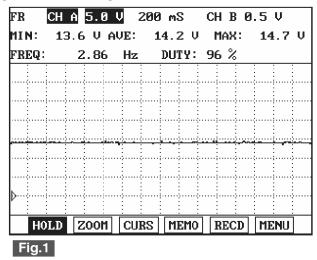
SMGFL6129L

ولین سامانه دیجیتال تعمیرکاران خودSPECIFICATION


λ Value (A/F Ratio)	Pumping Current (A)
0.65	-2.22
0.70	-1.82
0.80	-1.11
0.90	-0.50
1.01	0.00
1.18	0.33
1.43	0.67
1.70	0.94
2.42	1.38
Air (Atmosphere)	2.54

Temperature [°C(°F)]	Heater Resistance(Ω)
20 (68)	9.2
100 (212)	10.7
200 (392)	13.1
300 (572)	14.6
400 (752)	17.7
500 (932)	19.2
600 (1,112)	20.7
700 (1,292)	22.5

LFIG062A


FLC-105

CIRCUIT DIAGRAM

SFDF38267L

SIGNAL WAVEFORM

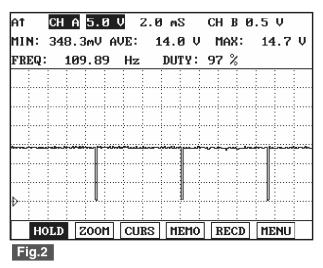


Fig.1) Waveform of Lambda sensor heater power. It is battery voltage.

Fig.2) Waveform of Lambda sensor heater control at cold idle.(duty increases to approx. 40% at heater operation.)

LFIG200A

Fuel System

REPLACEMENT

ACAUTION

After replacing the Lambda Sensor, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

SFDF28235L

Select "LAMBDA SENSOR CHANGE".

MODEL : VEHICLE NAME
SYSTEM : ENGINE(DIESEL)

01. ECU CHANGE

02. LAMBDA SENSOR CHANGE

- 03. RAIL PRESSURE SENSOR CHANGE
- 04. AIR FLOW SENSOR CHANGE
- 05. CPF CHANGE
- 06. D/PRESSURE SENSOR CHANGE
- 07. SWIRL CONTROL VALUE CHANGE

SFDF28289L

6. Confirm the message, and then press "ENTER" key.

LAMBDA SENSOR CHANGE(LSU)

IN THIS MODE, CAN SET ZERO THE LAMBDA SENSOR PARAMETERS FOR THE CHANGED SENSOR.

PRESS [ENTER] KEY.

SFDF28290L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

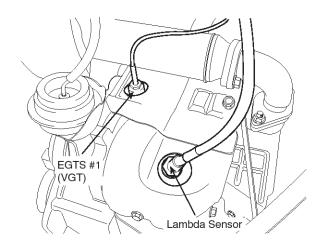
LAMBDA SENSOR CHANGE(LSU)

COMPLETED! AFTER 10 SEC. OR MORE SINCE IG.KEY OFF, TURN IG.KEY ON

PRESS [ENTER] KEY.

SFDF28291L

8. Wait for more than 10 seconds, and then turn ignition switch ON.


FLC-107

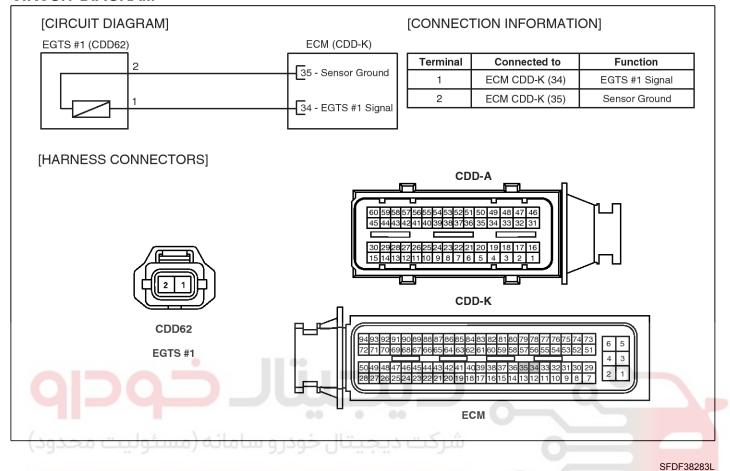
Exhaust Gas Temperature Sensor for VGT

INSPECTION

FUNCTION AND OPERATION PRINCIPLE

Exhaust Gas Temperature Sensor (EGTS) #1 for VGT is installed on exhaust manifold and senses the termperature of exhaust gas flowing into the VGT.

SMGFL6129L


SPECIFICATION

Temperature [˚ℂ(˚F)]	Resistance(^{kΩ})
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	0.35 ~ 0.38
900(1,652)	0.08 ~ 0.09

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Fuel System

CIRCUIT DIAGRAM

ولين سامانه سعيتال تعميركارال SIGNAL WAVEFORM

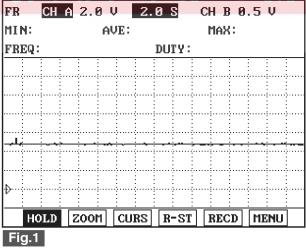


Fig.1) 4.8V is outputted at EGTS output signal circuit, when exhaust gas temp. is approx.150 $^{\circ}$ C. when exhaust gas temp. is 550~600 $^{\circ}$ C at CPF regeneration, output voltage drops to 0.3~0.4V.

LFIG448A

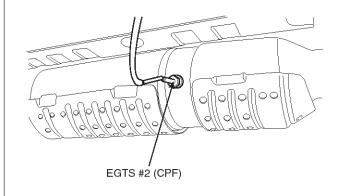
FLC-109

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the exhaust gas temperature sensor #1 connector.
- 3. Measure resistance between sensor signal terminal and ground terminal.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".

Fuel System


Exhaust Gas Temperature Sensor for CPF

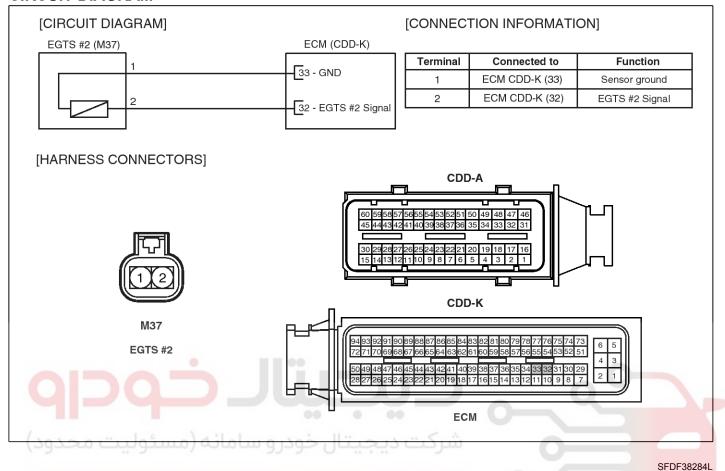
INSPECTION

FUNCTION AND OPERATION PRINCIPLE

Exhaust Gas Temperature Sensor (EGTS) #2 for CPF is installed on Catalyzed Particulate Filter (CPF) assembly and senses the temperature of exhaust gas flowing into the CPF.

When pre-determined engine condition is set, ECM burns soot gathered in CPF with exhaust gas. At this time, the exhaust gas temperature is an important factor of engine condition.

SMGFL6133L


SPECIFICATION

Temperature [°C(°F)]	Resistance(^{kΩ})
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	0.35 ~ 0.38
900(1,652)	0.08 ~ 0.09
شرکت دیجیتال خودر و سامانه (مسئولیت محدود)	

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FLC-111

CIRCUIT DIAGRAM

SIGNAL WAVEFORM المراب المالية درجورتا التعمير كال

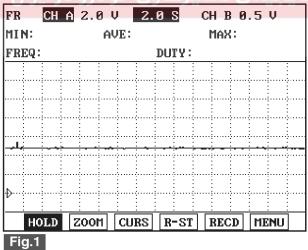


Fig.1) 4.8V is outputted at EGTS output signal circuit, when exhaust gas temp. is approx.150℃. when exhaust gas temp. is 550~600℃ at CPF regeneration, output voltage drops to 0.3~0.4V.

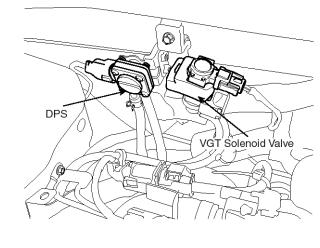
LFIG448A

Fuel System

COMPONENT INSPECTION

- 1. Turn ignition switch OFF.
- 2. Disconnect the exhaust gas temperature sensor #2 connector.
- 3. Measure resistance between sensor signal terminal and ground terminal.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION".


FLC-113

CPF Differential Pressure Sensor

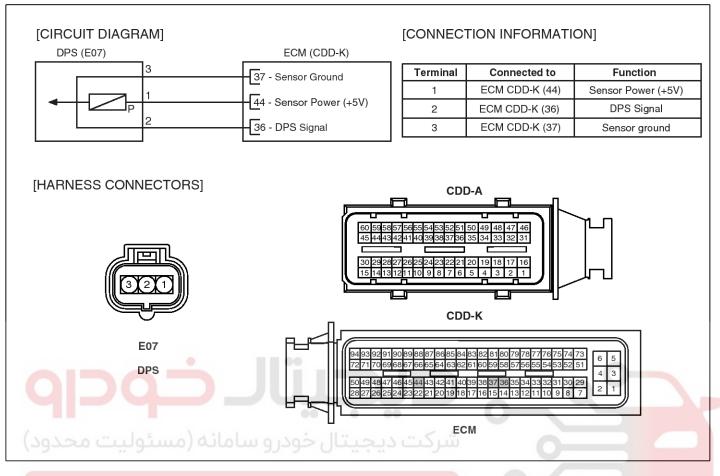
INSPECTION

FUNCTION AND OPERATION PRINCIPLE

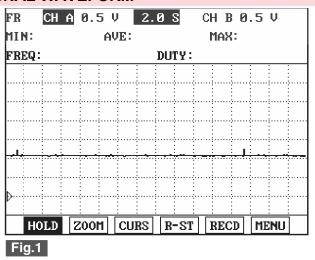
Differential Pressure Sensor (DPS) measures difference pressure between upstream and downstream exhaust gas of CPF. The ECM can calculate quantity of soot deposited in CPF with value from this sensor.

SMGFL6144L

SPECIFICATION


Differential Pressure[△P] (kPa)	Output Voltage (V)		Differential I	
0	1.00			
10	1.35			
20	1.70		U =	
30	2.05	•	00	
انه (مسئواهیت محدودا	ئال خ 2.40 سام	عيا	ىركت ديم	
50	2.75			
ولین سامانه دیجیتال تعمیرکاران خودرو در ایران				

Differential Pressure[▲P] (kPa)	Output Voltage (V)
60	3.10
70	3.45
80	3.80
90	4.15
100شرکت دیے	4.50


LFIG068A

Fuel System

CIRCUIT DIAGRAM

SIGNAL WAVEFORM

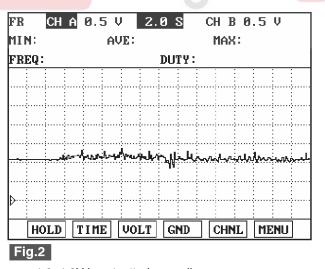


Fig1). This is the signal waveform of DPS at idle state. When CPF is new, 1.0~1.2V is outputted normally.

Fig2). This is the waveform of DPS as accelerating.

LFIG423A

SFDF38285L

FLC-115

REPLACEMENT

⚠CAUTION

After replacing the Differential Pressure Sensor (DPS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

5. Select "D/PRESSURE SENSOR CHANGE".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **01. ECU CHANGE**
- 02. LAMBDA SENSOR CHANGE
- 03. RAIL PRESSURE SENSOR CHANGE
- 04. AIR FLOW SENSOR CHANGE
- **05. CPF CHANGE**

06. D/PRESSURE SENSOR CHANGE

07. SWIRL CONTROL VALUE CHANGE

SFDF28295L

6. Confirm the message, and then press "ENTER" key. D/PRESSURE SENSOR CHANGE(DPS)

IN THIS MODE, CAN RESET THE DIFFER-ENTIAL PRESSURE SENSOR PARAMETERS.

PRESS [ENTER] KEY.

SFDF28296L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

D/PRESSURE SENSOR CHANGE(DPS)

IN THIS MODE, CAN RESET THE DIFFER-PATTAL PRESCRIPE SENSOR PARAMETERS COMPLETED! AFTER 10 SEC. OR MORE

SINCE IG.KEY OFF, TURN IG.KEY ON

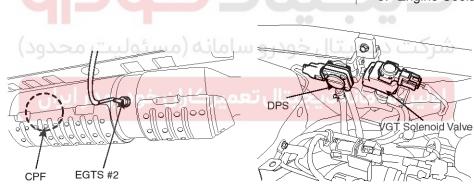
8. Wait for more than 10 seconds, and then turn ignition switch ON.

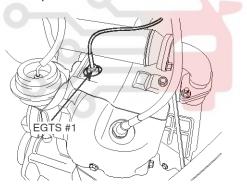
Fuel System

CPF (Catalyzed Particulate Filter)

DESCRIPTION

The Catalyzed Particulate Filter (CPF) system prevents Particulate Matter (PM) from being discharged to the atmosphere and consists of a filter assembly, two Exhaust Gas Temperature Sensor (EGTS) and a Differential Pressure Sensor (DPS). The filter is integrated in the catalytic converter assembly and has honeycomb cell structure which can filter the PM in the exhaust gas. While the exhaust gas passes the CPF, the PM is gathered in the CPF and the others (CO2, NO, etc.) are discharged to the atmosphere via muffler. This gathered PM in CPF is called "soot".

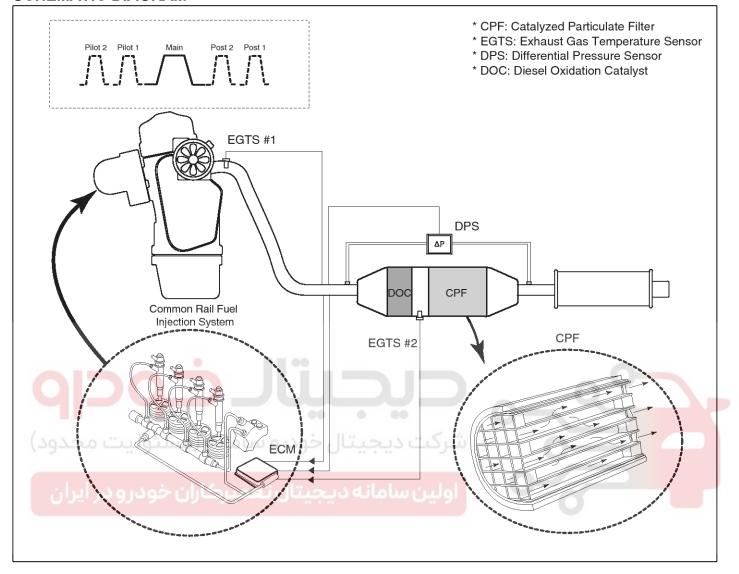

[CPF Regeneration]


If there are much soot in the CPF, the CPF must be regenerated. ECM can calculate amount of the soot by using the DPS signal, vehicle mileage or simulation data. If the ECM determines the CPF is need to regenerate, it will perform "Regeneration Procedure" when the vehicle condition is corresponded with the predetermined one (Regeneration Mode).

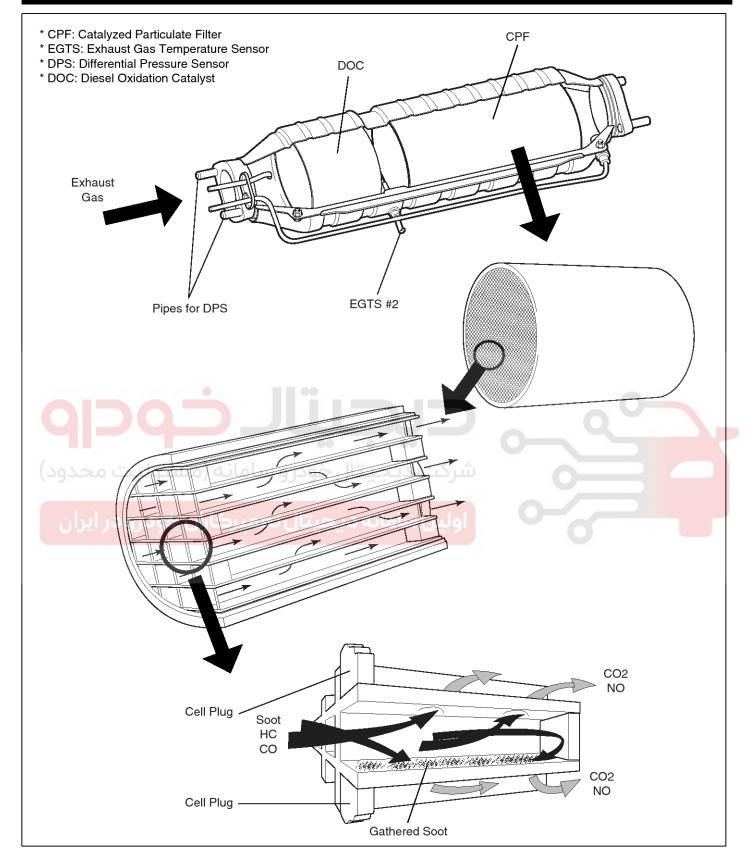
To burn the soot, the ECM injects additional fuel in the cylinders during exhaust stroke (two Post Injection) and increases the exhaust gas temperature to burning temperature of the soot (above $600\,^{\circ}$ C). At this time, the soot are burn and its ash remains in the CPF as a result of the combustion.

[Regeneration Mode]

- 1. Mileage > 1,000km
- 2. Engine Speed: 1,000 \sim 4,000rpm
- 3. Engine Load = About 0.7bar [8mg/st]
- 4. Vehicle Speed > 5km/h
- 5. Engine Coolant Temperature > 40 °C



SMGFL6137L


FLC-117

SCHEMATIC DIAGRAM

SFDF28298L

Fuel System

LFIG117A

FLC-119

CPF REGENERATION

This procedures is to forcibly regenerate the CPF with scan tool when the CPF doesn't have been regenerated during driving. For example, if the vehicle has repeated "Low speed driving" or "Short distance driving", the CPF regeneration procedure cannot be proceeded because "Regeneration Mode" doesn't made.

FORCIBLY REGENERATION CONDITION

- Engine coolant temperature: about 70 °C
- · Engine at idle
- P-range (A/T) or Neutral (M/T)
- · Normal battery voltage
- Electrical fully load ON (A/C ON if equipped, Blower ON with maximum speed, Head Lamp ON, Wiper ON, Other Lamps ON, etc.)

MNOTICE

The air conditioner's electrical load is very high. Accordingly, to make regeneration mode more quickly, turn it ON (If eqquipped).

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Start engine at idle and P-range (A/T) or neutral (M/T).
- 4. Apply electrical fully load to the vehicle (A/C ON, Blower ON with maximum speed, Head Lamp ON, Wiper ON, and Other Lamps ON, etc.)
- 5. Select "CPF SERVICE REGENERATION".

MODEL : UEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **02. CURRENT DATA**
- 03. FLIGHT RECORD
- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION

08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

SFDF28299L

6. Confirm the message, and then press "ENTER" key.

CPF SERUICE REGEN

- PURPOSE

IN THIS FUNCTION, CAN REMOVE THE DRAFT SOOT BY SCAN TOOL FORCIBLY WITH NO LICENSE.

-FULFILLMENT CONDITION
COOLANT TEMP 70 ° C.PARKING.ENGINE IDLE
BATTERY OLTAGE, ELECTRICAL FULLY LOAD
ON(A/CON, BLOWER, HEAD LAMP)

IF YOU REAY, PRESS [ENTER] KEY.

SFDF28300L

7. Confirm the data memorized in ECM, and then "ENTER" key.

TOTAL DRIVEN DISTANCE: ***** km

DRIVEN DISTANCE SINCE REGEN: *** km

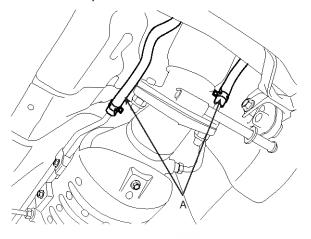
COUERAGE DRIVEN LENGTH: **** km

ENG ON TIME : **** hr

PRESS [ENTER]

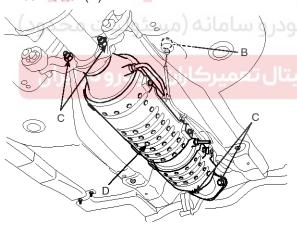
SFDF28301L

8. Perform CPF regeneration (Press "STRT" key).


FUEL QUANTITY	13	MCC
GEAR SHIFT INFORMATION	0	
ENGINE SPEED	882	rpm
BATTERY VOLTAGE	14	μŲ
COOLANT TEMP. SENSOR	41	°C
TEMP. OXIDAT.CATALYST	127	°C
E/GAS TEMP.PRE CPF	127	°C
ACTUA.SOOT MASS IN CPF	0.39	I

SFDF28302L

Fuel System


REMOVAL

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Lift the vehicle and support the CPF assembly with a jack.
- 3. Disconnect the hoses (A) connected with the differential pressure sensor from the CPF assembly.

SMGFL6735A

4. Disconnect the exhaust gas temperature sensor #2 connector (B).

SFDF38243L

5. Unscrew the mounting nuts (C) and remove the CPF assembly (D) from the vehicle.

INSTALLATION

1. Installation is reverse of removal.

CPF mounting nuts: 39.2 \sim 58.9N·m (4.0 \sim 6.0 kgf·m, 28.9 \sim 43.4lbf·ft)

FLC-121

REPLACEMENT

MOTICE

After replacing the CPF assembly, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "COMPONET CHANGE ROUTINE"

MODEL : VEHICLE NAME SYSTEM : ENGINE(DIESEL)

- **04. ACTUATION TEST**
- 05. SIMU-SCAN
- **06. IDENTIFICATION CHECK**
- 07. ENGINE TEST FUNCTION
- 08. CPF SERVICE REGENERATION

09. COMPONENT CHANGE ROUTINE

- 10. INJECTOR SPECIFIC DATA
- 11. DATA SETUP(UNIT CONV.)

SFDF28235L

5. Select "CPF CHANGE".

MODEL : VEHICLE NAME

SYSTEM : ENGINE(DIESEL)

- 01. ECU CHANGE
- 02. LAMBDA SENSOR CHANGE
- 03. RAIL PRESSURE SENSOR CHANGE
- 04. AIR FLOW SENSOR CHANGE

05. CPF CHANGE

- 06. D/PRESSURE SENSOR CHANGE
- 07. SWIRL CONTROL VALVE CHANGE

SFDF28303L

6. Confirm the message, and then press "ENTER" key.

CPF CHANGE

IN THIS MODE, CAN RESET THE DISTANCE OF LAST CHANGED CPF AND OTHERS RELATED PARAMETERS.

PRESS [ENTER] KEY.

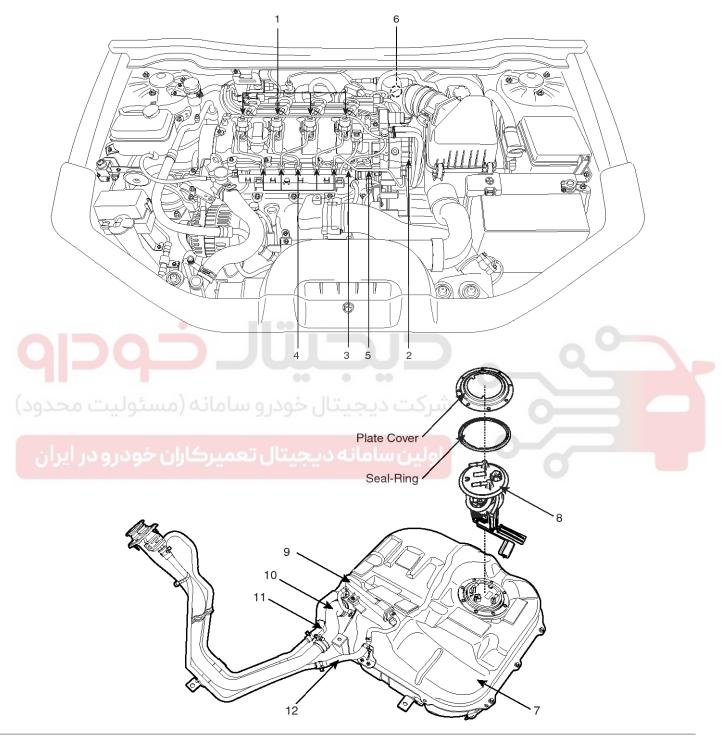
SFDF28304L

7. Confirm the "Complete" message, and then turn ignition switch OFF.

CPF CHANGE

IN THIS MODE CAN RESET THE DISTANCE OF COMPLETED! AFTER 10 SEC. OR MORE

R SINCE IG.KEY OFF, TURN IG.KEY ON


PRESS [ENTER] KEY.

SFDF28305L

8. Wait for more than 10 seconds, and then turn ignition switch ON.

Fuel System

Fuel Delivery System COMPONENT LOCATION

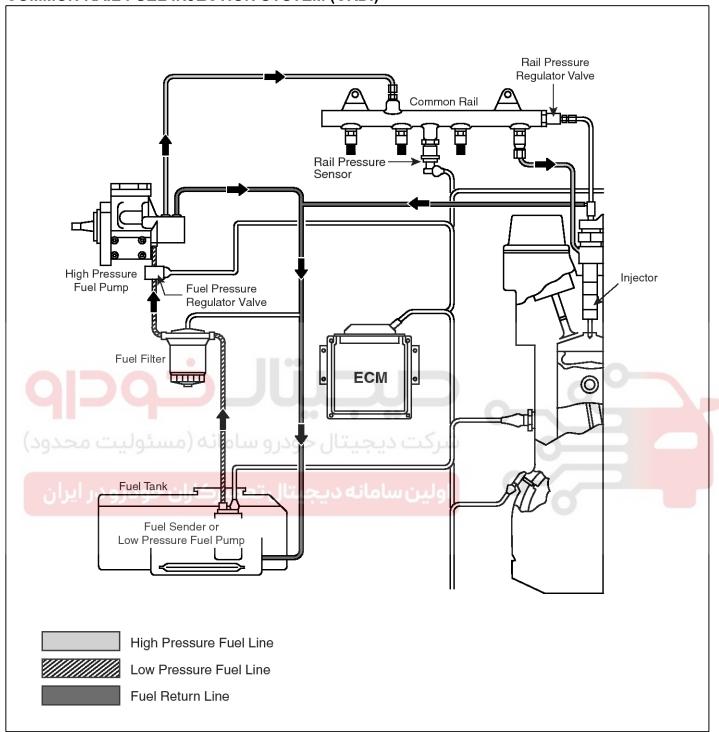
- 1. Injector
- 2. High Pressure Fuel Pump
- 3. Common Rail
- 4. High Pressure Fuel Pipe (Injector → Common Rail)
- 5. High Pressure Fuel Pipe (Common Rail → High Pressure Fuel Pump)
- Fuel Filter

- 7. Fuel Tank
- 8. Fuel Fump
- 9. Separator
- 10. Fuel Filler Hose
- 11. Leveling Hose
- 12. Ventilation Hose

SFDF38246L

FLC-123

CAUTION


- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- · Keep cleanly the parts and the working area.
- · Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector
 - Wash the contact area of the injector and replace the O-ring with a new one.
 - Spread oil on the injector O-ring.
 - To protect damage caused by shock, vertically insert the injector into the cylinder head.
- · When installing High Pressure Fuel Pipe
 - Do not use again the used high pressure fuel pipe.
 - Install the flange nut correctly.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Fuel System

COMMON RAIL FUEL INJECTION SYSTEM (CRDI)

SFDF38247L

FLC-125

● LOW PRESSURE FUEL CIRCUIT LOW PRESSURE FUEL PUMP

The low pressure fuel pump is either an electric fuel pump with pre-filter, or a gear-type fuel pump. The pump draws the fuel from the fuel tank and continually delivers the required quantity of fuel in the direction of the high pressure fuel pump (via fuel filter).

FUEL SENDER

The fuel sender is located into the fuel tank and measures amount of fuel contained in fuel tank.

FUEL FILTER

The fuel filter is located in between the low pressure fuel pump and the high pressure fuel pump and filters the fuel delivered from the fuel tank.

HIGH PRESSURE FUEL CIRCUIT HIGH PRESSURE FUEL PUMP

The high pressure fuel pump compresses fuel up to 1,600 bar and delivers the compressed fuel to the common rail.

COMMON RAIL

The common rail is connected with the high pressure fuel pump and the injectors by the high pressure fuel pipes. This rail stores the fuel compressed in the high pressure fuel pump. The ECM controls the fuel pressure of the common rail by using the rail pressure sensor and the rail pressure regulator valve installed on the common rail.

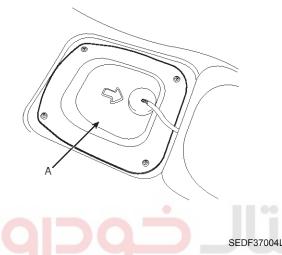
INJECTOR

The injector injects the high pressure fuel stored in the common rail into the cylinder by the ECM control signal.

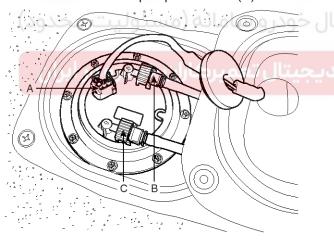
HIGH PRESSURE FUEL PIPE

The high pressure fuel pipe is a channel in high pressure fuel circuit consisting of the high pressure fuel pump, common rails, and injectors. It is a steel tube which can withstand high frequency generated when the fuel pressure reaches the maximum pressure or fuel injection stops.

The differences in length between the common rail and the individual injectors are compensated for by using slight or pronounced bends in the individual lengths of tubing. Nevertheless, the injection lines should be kept as short as possible.

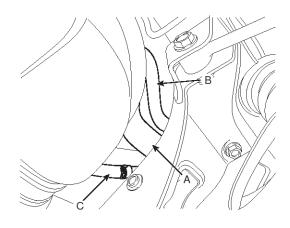


Fuel System

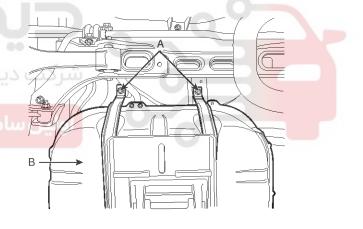

Fuel Tank

REMOVAL

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove or fold the rear seat cushion (Refer to "SEAT" in BD group).
- 3. Remove the service cover (A).


Disconnect the fuel pump connector (A).

SFDF38248L


- 5. Disconnect the fuel feed tube quick-connector (B) and the fuel return tube quick-connector (C).
- 6. Lift the vehicle.
- 7. Support the fuel tank with a jack.

8. Disconnect the fuel filler hose (A), the leveling hose (B), and the ventilation hose (C).

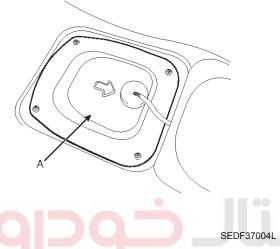
SEDF37007L

9. Unscrew the fuel tank band installation nuts (A), and then remove the fuel tank (B) from the vehicle.

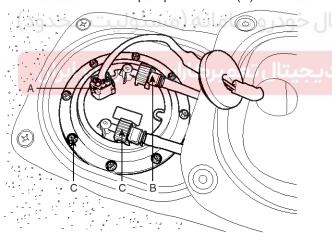
SEDF37009L

INSTALLATION

1. Installation is reverse of removal.

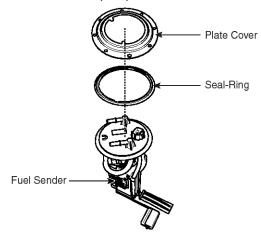

Fuel tank band installation nuts: 39.2 $^{\sim}$ 54.0 N·m (4.0 $^{\sim}$ 5.5 kgf·m, 28.9 $^{\sim}$ 39.8 lbf·ft)

FLC-127


Fuel Pump

REMOVAL

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove or fold the rear seat cushion (Refer to "SEAT" in BD group).
- 3. Remove the service cover (A).


4. Disconnect the fuel pump connector (A).

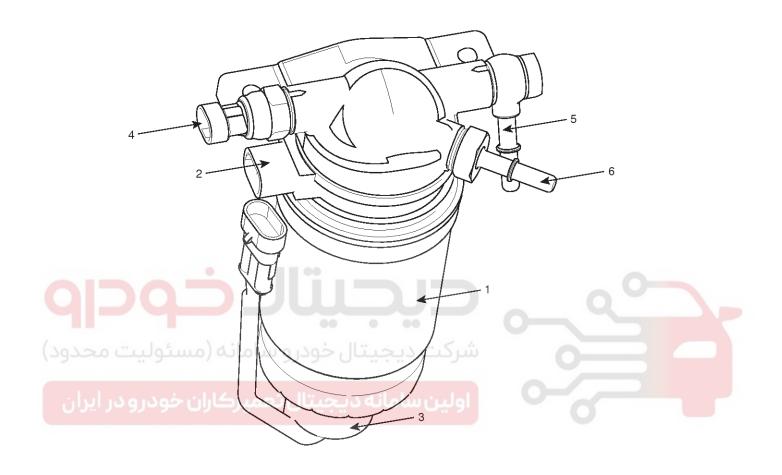
SFDF38249L

5. Disconnect the fuel feed tube quick-connector (B) and the fuel return tube quick-connector (C).

6. Unscrew the fuel pump installation bolts (D), and then remove the fuel pump from the fuel tank.

SFDF38250L

INSTALLATION

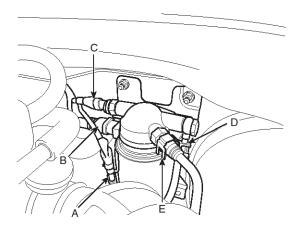

1. Installation is reverse of removal.

Fuel pump installation bolts: 2.0 \sim 2.9 N·m (0.2 \sim 0.3 kgf·m, 1.4 \sim 2.2 lbf·ft)

Fuel System

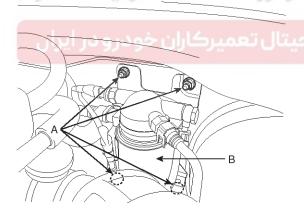
Fuel Filter

COMPONENTS

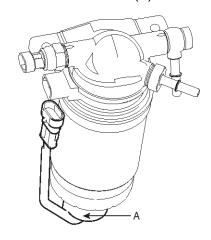

- 1. Fuel Filter
- 2. Heater
- 3. Water Sensor
- 4. Thermostat
- 5. Nipple (\leftrightarrow Fuel Tank)
- 6. Nipple (↔ High Pressure Fuel Pump)

SFDF38251L

FLC-129


REPLACEMENT

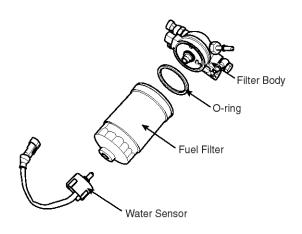
- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the water sensor connector (A), the heater connector (B), and the thermostat connector (C).


SFDF38252L

- 3. Disconnect the fuel inlet tube quick-connector (D) and the fuel outlet tube quick-connector (E).
- 4. Unscrew the fuel filter installation nuts (A), and then remove the fuel filter (B) from the vehicle.

SEDF37012L

5. Remove the water sensor (A).



SFDF38253L

 After removing the fuel filter (A) from the fuel filter assembly, replace it with a new one, and then install the fuel filter assembly in accordance with reverse of above steps.

SFDF38254L

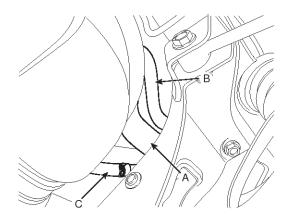
SFDF38255L

Fuel System

⚠CAUTION

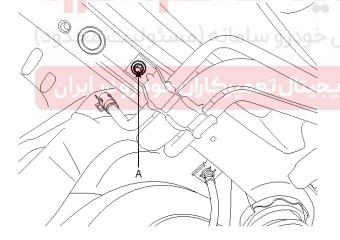
When replacing the fuel filter, must replace the O-ring.

7. Start the engine and check that there is any leak on the low pressure fuel circuit including the fuel filter.

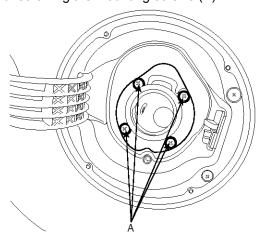


FLC-131

Filler-Neck Assembly


REMOVAL

1. Disconnect the fuel filler hose (A), the leveling hose (B), and the ventilation hose (C).


SEDF37007L

- 2. Remove the left rear wheel & tire and the wheel house.
- 3. Unscrew the mounting bolt (A).

SFDF38256L

4. Remove the fuel filler neck assembly after unscrewing the mounting screws (A).

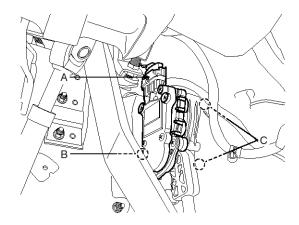
SFDF38257L

MOTICE

If the filler neck assembly can't be removed easily, remove it again after loosening the rear cross member mounting bolt partly (Refer ro "REAR LOW ARM" in SS group).

INSTALLATION

1. Installation is reverse of removal.


ولین ساما

Fuel System

Accelerator Pedal

REMOVAL

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the accelerator pedal position sensor connector (A).

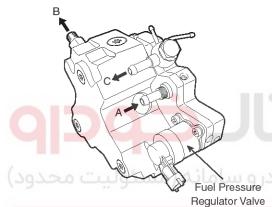
SFDF38258L

 Remove the accelerator pedal assembly from the vehicle after unscrewing the mounting bolt (B) and nuts (C).

INSTALLATION

1. Installation is reverse of removal.

Fuel pump installation bolts: $12.8 \sim 15.7 \text{ N} \cdot \text{m}$ ($1.3 \sim 1.6 \text{ kgf} \cdot \text{m}$, $9.4 \sim 11.6 \text{ lbf} \cdot \text{ft}$)

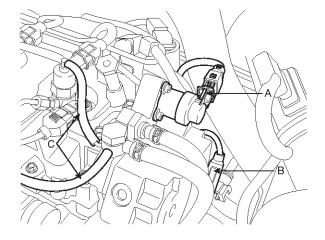


FLC-133

High Pressure Pump

DESCRIPTION

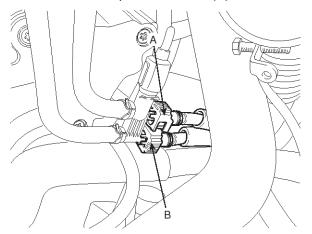
The high pressure fuel pump is the interface between the low pressure and the high pressure stages. Under all operating conditions, it is responsible for providing adequate high pressure fuel through out the vehicle's complete service life. This also includes the provision of extra as needed for rapid starting and for rapid build-up of pressure in the rail. The high pressure pump continually generates the system pressure as needed in the high-pressure accumulator (common rail). This means therefore, that in contrast to conventional systems, the fuel does not have to be specially compressed for each individual injection process.


- A: Fuel Inlet
- (From Fuel Tank via Fuel Filter)
- B : Fuel Outlet (To Common Rail)
- C : Fuel Return (To Fuel Tank)

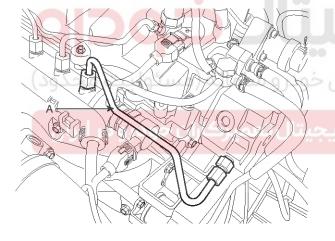
SFDF38261L

REMOVAL

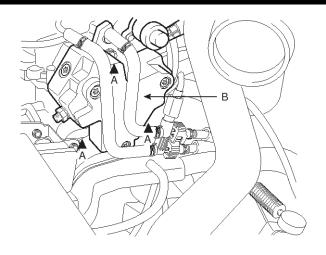
⚠ CAUTION


- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector
 - Wash the contact area of the injector and replace the O-ring with a new one.
 - Spread oil on the injector O-ring.
 - To protect damage caused by shock, vertically insert the injector into the cylinder head.
- When installing High Pressure Fuel Pipe
 - Do not use again the used high pressure fuel pipe.
 - Install the flange nut correctly.
- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the air cleaner assembly (Refer to group "EM" in this Shop Manual).
- Disconnect the fuel pressure regulator valve connector (A) and the fuel temperature sensor connector (B).

SFDF38259L


Fuel System

- 4. Disconnect the return hoses (C) connected with the injectors and the common rail.
- 5. Disconnet the fuel feed tube quick-connector (A) and the return tube quick-connector (B).


LFIG077A

6. Remove the high pressure fuel pipe (A) connecting the high pressure fuel pump with the common rail.

SFDF38260L

7. Unscrew the mounting bolts (A) and remove the high pressure fuel pump (B) from the engine.

LFIG080A

INSTALLATION

1. Installation is reverse of removal.

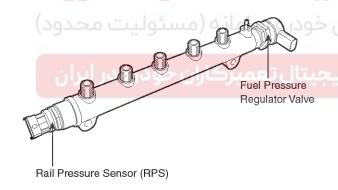
MOTICE

When installing the high pressure fuel pipe, apply the specified tightening torques with the special service tool (Refer to below table).

Item	Dimension	SST No.
Flange Nut (HP Pump Side)	14 mm (0.551 in)	09314-27110
Flange Nut (Co- mmon Rail Side)	17 mm (0.669 in)	09314-27120

High pressure fuel pump installation bolts: 24.5 \sim 34.3 N·m (2.5 \sim 3.5 kgf·m, 12.1 \sim 25.3 lbf·ft) High pressure fuel pipe installation nut: 24.5 \sim 28.4 N·m (2.5 \sim 2.9 kgf·m, 18.1 \sim 20.1 lbf·ft)

FLC-135

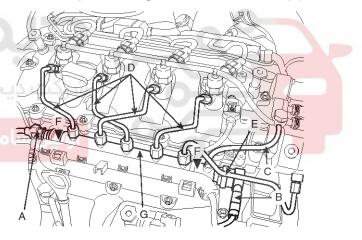

Common Rail

DESCRIPTION

The common rail stores the fuel at high pressure. At the same time, the pressure oscillations which are generated due to the high-pressure pump delivery and the injection of fuel are damped by the rail volume. This common rail is common to all cylinders, hence its name "common rail". Even when large quantities of fuel are extracted, the common rail maintains its inner pressure practically constant from the moment the injector opens.

In order to comply with the wide variety of engine installation conditions, the common rail with its flow limiters and the provistions for attaching rail pressure sensor, fuel pressure control valve, and pressure limiter valve is available in a number of different designs.

The available common rail volume is permanently filled with pressurized fuel. The compressibility of the fuel resulting from the high pressure is utilized to achieve the accumulator effect. When fuel leaves the rail for injection, the pressure variations resulting from the pulsating fuel supply from the high-pressure pump are compensated for.


SFDF38262L

REMOVAL

ACAUTION

- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- · Pay attention to a foreign substance.

- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- · Do not remove injector except for special case.
- When installing Injector
 - Wash the contact area of the injector and replace the O-ring with a new one.
 - Spread oil on the injector O-ring.
 - To protect damage caused by shock, vertically insert the injector into the cylinder head.
- · When installing High Pressure Fuel Pipe
 - Do not use again the used high pressure fuel pipe.
 - Install the flange nut correctly.
- Turn ignition switch OFF and disconnect the regative
 battery cable.
- 2. Disconnect the rail pressure sensor connector (A) and rail pressure regulator valve connector (B).

SFDF38286L

- 3. Disconnect the return hose (C) from the common rail.
- 4. Remove the high pressure fuel pipe (D) connecting the injectors with the common rail.
- 5. Remove the high pressure fuel pipe (E) connecting the common rail with the high pressure fuel pump.
- 6. Unscrew the two mounting bolts (F) and remove the common rail (G).

Fuel System

INSTALLATION

1. Installation is reverse of removal.

MOTICE

When installing the high pressure fuel pipe, apply the specified tightening torques with the special service tool (Refer to below table).

Item	Dimension	SST No.	
Flange Nut (Inj - ector Side)		09314-27110	
Flange Nut (HP Pump Side)	14 mm (0.551 in)		
Flange Nut (Co- mmon Rail Side)	17 mm (0.669 in)	09314-27120	

 $[\]cdot$ Common rail installation bolts: 19.6 \sim 26.5 N·m (2.0 \sim 2.7 kgf·m, 14.5 \sim 19.5 lbf·ft)

 $[\]cdot$ High pressure fuel pipe installation nut: 24.5 \sim 28.4 N·m (2.5 \sim 2.9 kgf·m, 18.1 \sim 20.1 lbf·ft)

