Emission Control System

General Information

SPECIFICATIONS

Item	Specification	
Purge Control Solenoid Valve (PCSV)	Туре	Duty Control type
	Resistance (Ω)	24.5 ~ 27.5 at 20 °C (68 °F)

TIGHTENING TORQUES

Item	N∙m	kgf₊cm	lbf-ft
Positive Crankcase Ventilation Valve	7.8 ~ 11.8	0.8 ~ 1.2	5.8 ~ 8.7

COMPONENTS

Components	Function	Remarks
Crankcase Emission System - Positive Crankcase Ventilation (PCV) valve	HC reduction	Variable flow rate type
Evaporative Emission System - Evaporative emission canister - Purge Control Solenoid Valve (PCSV)	HC reduction HC reduction	Duty control solenoid valve
Exhaust Emission System - MFI system (air-fuel mixtrue control device) - Three-way catalytic converter	CO, HC, NOx reduction CO, HC, NOx reduction	Heated oxygen sensor feedback type Monolithic type

TROUBLESHOOTING

Symptom Symptom	Suspect area	Remedy
Engine will not start or hard to start	Vacuum hose disconnected or damaged	Repair or replace
	Malfunction of the EVAP. Canister Purge Sole- noid Valve	Repair or replace
	Vacuum hose disconnected or damaged	Repair or replace
Rough idle or engine stalls	Malfunction of the PCV valve	Replace
	Malfunction of the evaporative emission canist- er purge system	Check the system; if there is a pro- blem, check related components p- arts
Excessive oil consumption	Positive crankcase ventilation line clogged	Check positive crankcase ventilati- on system

General Information

SCHEMATIC DIAGRAM [2.0 DOHC, UNLEADED]

Emission Control System

LEIF008A

General Information

[2.0 DOHC, LEADED]

LEIF006H

Emission Control System

COMPONENTS LOCATION

- 1. Purge Control Solenoid Valve (PCSV)
- 2. PCV Valve
- 5. Canister close valve

- 3. Canister
- 4. Catalytic Converter
- 6. Fuel Tank Pressure Sensor

LEIF603A

General Information

[2.0 DOHC]

EC-7

WWW.DIGITALKHODRO.COM

EC-8

Emission Control System

Crankcase Emission Control System

Crankcase Emission Control System

COMPONENTS LOCATION

EC-9

WWW.DIGITALKHODRO.COM

EC-10

Emission Control System

LEIF603I

LEIF013A

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Crankcase Emission Control System

EC-11

Positive Crankcase Ventilation (PCV) Valve

OPERATION

REMOVAL

- Disconnect the ventilation hose from the positive crankcase ventilation (PCV) valve. Remove the PCV valve from the rocker cover and reconnect it to the ventilation hose.
- 2. Run the engine at idle and put a finger on the open end of the PCV valve and make sure that intake manifold vacuum can be felt.

The plunger inside the PCV valve will move back and forth.

Emission Control System

INSTALLATION

Install the PCV valve and tighten to the specified torque.

INSPECTION

- 1. Remove the PCV valve.
- 2. Insert a thin stick(A) into the PCV valve(B) from the threaded side to check that the plunger moves.
- 3. If the plunger does not move, the PCV valve is clogged. Clean it or replace.

Evaporative Emission Control System

EC-13

Evaporative Emission Control System

Emission Control System

INSPECTION

- 1. Disconnect the vacuum hose from the throttle body, and connect a vacuum pump to the vacuum hose.
- 2. Check the following points when the engine is cold [engine coolant temperature $60^{\circ}C(140^{\circ}F)$ or below] and when it is warm [engine coolant temperature $80^{\circ}C(176^{\circ}F)$ or higher].

WHEN ENGINE IS COLD

Engine operating c - ondition	Applied vacu- um	Result
Idling	50 kPa	
3,000 rpm	(7.3 psi)	vacuum is neiu

WHEN ENGINE IS WARM

Engine operating c - ondition	Applied vacu- um	Result	
Idling	50 kPa (7.3 psi)	Vacuum is held	
Within 3 minutes aft- er engine start at 3,0 00 rpm	Try to apply va-	Vacuum is rele- ased	
After 3 minutes have passed after engine start at 3,000 rpm	50 kPa (7.3 psi)	Vacuum will be held momentar- ily, after which, it will be releas- ed	رکت دیجیت بلین سامانه

LEIF603F

021 62 99 92 92

EC-15

Evaporative Emission Control System

Canister

INSPECTION

1. Look for loose connections, sharp bends or damage to the fuel vapor lines.

LEIF013B

- 2. Look for distortion, cracks or fuel leakage.
- 3. After removing the EVAP. canister, inspect for cracks or damage.

LEIF002A

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Emission Control System

Purge Control Solenoid Valve (PCSV)

INSPECTION

When disconnecting the vacuum hose, make an identification mark on it so that it can be reconnected to its original position.

- 1. Disconnect the vacuum hose from the solenoid valve.
- 2. Detach the harness connector.
- 3. Connect a vacuum pump to the nipple to which the red-striped vacuum hose was connected.
- 4. Apply vacuum and check when voltage is applied to the PCSV and when the voltage is discontinued.

Battery voltage	Normal condition	
When applied	Vacuum is released	
When discontinued	Vacuum is maintained	

5. Measure the resistance between the terminals of the solenoid valve.

PCSV coil resistance (\Omega): 24.5 \sim 27.5 Ω at 20 $^\circ C$ (68 $^\circ F)$

LEIF603H

LEIF603G

Evaporative Emission Control System

EC-17

Fuel Filler Cap

DESCRIPTION

Emission Control System

Fuel Tank Air Filter

REPLACEMENT

- 1. Remove the rear-left wheel & tire, and then remove the inner wheel house cover.
- 2. Disconnect the vapor hose (A) from the fuel tank air filter (C).

3. Remove the installation nuts (B), and then remove the fuel tank air filter (C) from the fuel fill-neck assembly. 4. Install a new fuel tank air filter.

SKMEC9000L

Exhaust Emission Control System

Exhaust Emission Control System DESCRIPTION

Modifications to the combustion chamber, intake manifold, camshaft and ignition system form the basic control system.

These items have been integrated into a highly effective system which controls exhaust emissions while maintaining good driveability and fuel economy.

AIR/FUEL MIXTURE CONTROL SYSTEM [MULTIPORT FUEL INJECTION (MFI) SYSTEM]

This in turn allows the engine to produce exhaust gases of the proper composition to permit the use of a three way catalyst. The three way catalyst is designed to convert the three pollutants (1) hydrocarbons (HC), (2) carbon monoxide (CO), and (3) oxides of nitrogen (NOx) into harmless substances. There are two operating modes in the MFI system.

- 1. Open Loop air/fuel ratio is controlled by information programmed into the ECM.
- Closed Loop air/fuel ratio is adjusted by the ECM based on information supplied by the oxygen sensor.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

EC-19

Emission Control System

CVVT (Continuously Variable Valve Timing) System

DESCRIPTION

The CVVT (Continuously Variable Valve Timing) which is installed on the exhaust camshaft controls intake valve open and close timing in order to improve engine performance.

The intake valve timing is optimized by CVVT system depending on engine rpm.

This CVVT system improves fuel efficiency and reduces NOx emissions at all levels of engine speed, vehicle speed, and engine load by EGR effect because of valve over-lap optimization.

The CVVT changes the phase of the intake camshaft via oil pressure.

It changes the intake valve timing continuously.

High			Driving Condition	Intake Valve Timing	Effect	
OAD	3	4	Light load (1)	Retard	Stable combustion	
Ľ			Part load (2)	Advance	Enhanced fuel economy and exhaust emissions	
		2	High load& Low rpm (3)	Advance	Enhanced torque	
			High load& High rpm (4)	Retard	Enhanced Power	
q	ENGINE SPE	ED (RPM)				EIF001C
		خودرو سامانه (ر	ت دیجیتال •			

Exhaust Emission Control System

OPERATION

The CVVT system makes continuous intake valve timing changes based on operating conditions.

Intake valve timing is optimized to allow the engine to produce maximum power.

Cam angle is advanced to obtain the EGR effect and reduce pumping loss. The intake valve is closed quickly to reduce the entry of the air/fuel mixture into the intake port and improve the changing effect. Reduces the cam advance at idle, stabilizes combustion, and reduces engine speed.

If a malfunction occurs, the CVVT system control is disabled and the valve timing is fixed at the fully retarded position.

LEIF001R

021 62 99 92 92

EC-21

021 62 99 92 92

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Emission Control System

EC-22

- 1. The above figure shows the relative operation structures of the housing vane to the rotor vane.
- 2. If the CVVT is held a certain control angle, to hold this state, oil is replenished as much as oil leaks from the oil pump.

The OCV (Oil-flow Control Valve) spool location at this time is as follows.

Oil pump \rightarrow Advance oil chamber (Little by little open the inflow side to the advance oil chamber) \rightarrow Almost close the drain side

Be sure there might be a difference in the position according to the engine running state (rpm, oil temperature, and oil pressure).

حیجیال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Exhaust Emission Control System

COMPONENTS LOCATION [2.0 DOHC]

EC-23