General Information

General Information

Specifications

Fuel Delivery System

Items			Specification		
Fuel Tank		Capacity	53lit. (14.0 U.S.gal., 11.7 Imp.gal.)		
Fuel Filter (built in Fuel Pump Assembly)		Туре	High pressure type		
Fuel Pressure Regulator (built in Fuel Pump Assembly)	Regulated Fuel Press- ure	338 ~ 348kpa (3.45 ~ 3.55kgf/ో 49.0 ~ 50.5psi)		
		Туре	Electrical, in-tank type		
Fuel Pump		Driven by	Electric motor		
Fuel Retrun System		Pressure	Returnless		
Sensors MANIFOLD ABSOLUTE PRE > Type: Piezo-resistive press	· · · · ·	ENGINE COOLANT ▷ Type: Thermistor ▷ Specification	TEMPERATURE SENSOR (ECTS,		
> Specification		Temperature [°C	C(°F)] Resistance(^k Ω)		
Pressure (kPa)	Output Voltage (V)	-40(-40)	48.14		
20.0	0.79	-20(-4)	14.13 ~ 16.83		
46.7	1.84	0(32)	5.79		
101.32	4.0	20(68)	2.31 ~ <mark>2.5</mark> 9		
NTAKE AIR TEMPERATURE	E SENSOR (IATS)	40(104)	1.15		
> Type: Thermistor type		60(140)	0.59		
> Specification		80(176)	0.32		
Temperature [°C(°F)]	Resistance(^k Ω)	THROTTLE POSITIO	ON SENSOR (TPS)		
-40(-40)	40.93 ~ 48.35	> Type: Variable res			
-30(-22)	23.43 ~ 27.34	Specification			
-20(-4)	13.89 ~ 16.03	Throttle Ang	le Output Voltage (V)		
-10(14)	8.50 ~ 9.71	C.T	$0.25 \sim 0.9 V$		
0(32)	5.38 ~ 6.09	W.O.T	Min. 4.0V		
10(50)	3.48 ~ 3.90	Items	Specification		
20(68)	2.31 ~ 2.57	Sensor Resistance			
25(77)	1.90 ~ 2.10				
30(86)	1.56 ~ 1.74				
40(104)	1.08 ~ 1.21				
60(140)	0.54 ~ 0.62				
80(176)	0.29 ~ 0.34				

FLA-3

Fuel System

FLA-4

HEATED OXYGEN SENSOR (HO2S)

- ▷ Type: Zirconia (ZrO2) Type
- ▷ Specification

A/F Ratio	Output Voltage (V)	
Rich	0.6 ~ 1.0	
Lean	0~0.4	

Items	Specification	
Heater Resistance (Ω)	Approx. 9.0 [20 [°] C(68° ^F)]	

CAMSHAFT POSITION SENSOR (CMPS)

▷ Type: Hall effect type

CRANKSHAFT POSITION SENSOR (CKPS)

▷ Type: Hall effect type

KNOCK SENSOR (KS)

- ▷ Type: Piezo-electricity type
- Specification

Items	Specification	
Capacitance (pF)	950 ~ 1,350	
Resistance(MQ)	ل خودر 4.87 امانه (م	

•

CVVT OIL TEMPERATURE SNESOR (OTS)

- ک در ای تعمیر کاران د Type: Thermistor type
- Specification

Temperature [°C(°F)]	Resistance (^k Ω)		
-40(-40)	52.15		
-20(-4)	16.52		
0(32)	6.0		
20(68)	2.45		
40(104)	1.11		
60(140)	0.54		
80(176)	0.29		

Actuators

- INJECTOR
- ▷ Number: 4
- Specification

Items	Specification	
Coil Resistance (Ω)	13.8 ~ 15.2 [20 [°] C(68 [°] F)]	

IDLE SPEED CONTROL ACTUATOR (ISCA)

 \triangleright Type: Double coil type

▷ Specification

•			
Items	Specification		
Closing Coil Resistance (Ω)	14.6 ~ 16.2 [20℃(68°F)]		
Opening Coil Resistance (Ω)	11.1 ~ 12.7 [20℃(68°F)]		
Duty (%)	Air Flow Rate (^{m³} /h)		
15	1.0 ~ 2.3		
35	7.5 ~ 12.7		
70	43.0 ~ 55.0		
96	63.0 ~ 71.0		

PURGE CONTROL SOLENOID VALVE (PCSV)

Specification

Items ولين سا	Specification	
Coil Resistance (Ω)	16.0 [20 [°] ℃(68° ^F)]	

CVVT OIL CONTROL VALVE (OCV)

▷ Specification

Items	Specification	
Coil Resistance (Ω)	6.9 ~ 7.9 [20℃(68°F)]	

IGNITION COIL

 \triangleright Type: Double ended type

 \triangleright Specification

Items	Specification	
Primary Coil Resistance (Ω)	0.58Ω±10% [20 [℃] (68° ^F)]	
Secondary Coil Resistance (kΩ)	8.8 ^{kΩ} ±15% [20℃(68°F)]	

General Information

Service Standard

Ignition Timing	BTDC 5° \pm 10°			
Idle Speed	A/CON OFF	Neutral,N,P-range		
		D-range	$660~\pm~100$ rpm	
	A/CON ON	Neutral,N,P-range		
		D-range		

Tightening Torques Engine Control System

Item	Kgf∙m	N-m	lbf-ft
ECM installation bolts	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Manifold absolute pressure sensor installation bolt	0.8 ~ 1.2	7.8 ~ 11.8	5.8~8.7
Engine coolant temperature sensor installation	2.0 ~ 4.0	19.6 ~ 39.2	14.5 ~ 28.9
Throttle position sensor installation screws	0.15 ~ 0.25	1.5 ~ 2.5	1.1 ~ 1.8
Crankshaft position sensor installation bolt	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Camshaft position sensor installation bolt	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Knock sensor installation bolt	1.7 ~ 2.7	16.7 ~ 26.5	12.3 ~ 19.5
He <mark>a</mark> ted oxygen sensor (Bank 1 / Sensor 1) installation	4.0 ~ 5.0	39.2 ~ 49.1	28.9 ~ 36.2
Heated oxygen sensor (Bank 1 / Sensor 2) installation	4.0 ~ 5.0	39.2 ~ 49.1	28.9 ~ 36.2
CVVT Oil temperature sensor installation	0.2 ~ 0.4	2.0 ~ 3.9	1.4 ~ 2.9
Idle speed control actuator installation screws	0.8 ~ 1.2	7.8 ~ 11.8	5.8 ~ 8.7
CVVT Oil control valve installation bolt su	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Ignition coil assembly installation bolts/nuts	1.9 ~ 2.7	18.6 ~ 26.5	13.7 ~ 19.5
Throttle body installation nuts	1.9 ~ 2.4	18.6 ~ 26.5	13.7 ~ 17.4

Fuel Delivery System

Item	Kgf⋅m	N∙m	lbf-ft
Fuel pump installation bolt	$0.4 \sim 0.6$	$3.9 \sim 5.9$	2.9~4.3
Delivery pipe installation bolts	1.9 ~ 2.4	18.6 ~ 23.5	13.7 ~ 17.4

FLA-5

٦

FLA-6

Fuel System

Special Service Tools

Tool (Number and name)	Illustration	Application
09353-24100 Fuel Pressure Gauge		Measuring the fuel line pressure
09353-38000 Fuel Pressure Gauge Adapt- er		Connection between the delivery pipe and fuel feed line
09353-24000 Fuel Pressure Gauge Conn- ector		Connection between Fuel Pressure Gauge (09 353-24100) and Fuel Pressure Gauge Adapter (09353-38000)
ن خودرو در ایران	ين سامانه ديجيتال تعميركارا	

General Information

Basic Troubleshooting

Basic Troubleshooting Guide

1	Bring Vehicle to Workshop
2	Analyze Customer's Problem
	Ask the customer about the conditions and environment relative to the issue (Use CUSTOMER PROBLEM ANALYSIS SHEET).
3	Verify Symptom, and then Check DTC and Freeze Frame Data
	Connect Hi-Scan (Pro) to Diagnostic Link Connector (DLC). Record the DTC and freeze frame data.
	ΝΟΤΕ
	To erase DTC and freeze frame data, refer to Step 5.
4	Confirm the Inspection Procedure for the System or Part
	Using the SYMPTOM TROUBLESHOOTING GUIDE CHART, choose the correct inspection procedure for the system or part to be checked.
5	Erase the DTC and Freeze Frame Data
C	WARNING NEVER erase DTC and freeze frame data before completing Step 2 MIL/DTC in "CUSTOMER PROBLEM ANALYSIS SHEET".
6	Inspect Vehicle Visually
	Go to Step 11, if you recognize the problem.
7	Recreate (Simulate) Symptoms of the DTC
	Try to recreate or simulate the symptoms and conditions of the malfunction as described by customer. If DTC(s) is/are displayed, simulate the condition according to troubleshooting procedure for the DTC.
8	Confirm Symptoms of Problem
	If DTC(s) is/are not displayed, go to Step 9. If DTC(s) is/are displayed, go to Step 11.
9	Recreate (Simulate) Symptom
	Try to recreate or simulate the condition of the malfunction as described by the customer.
10	Check the DTC
	If DTC(s) does(do) not occur, refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE. If DTC(s) occur(s), go to Step 11.
11	Perform troubleshooting procedure for DTC
12	Adjust or repair the vehicle
13	Confirmation test
14	END

021 62 99 92 92

WWW.DIGITALKHODRO.COM

021 62 99 92 92

FLA-7

Fuel System

Customer Problem Analysis Sheet

1. VEHICLEINFORMAITON

VIN No.		Transmission	□ M/T □ A/T □CVT □ etc.
Production date		Driving type	□ 2WD (FF) □ 2WD (FR) □ 4WD
Odometer Reading	km/mile		

2. SYMPTOMS

FLA-8

□ Unable to start	 Engine does not turn over Incomplete combustion Initial combustion does not occur
Difficult to start	Engine turns over slowly Other
Poor idling	 ☐ Rough idling ☐ Incorrect idling ☐ Unstable idling (High: rpm, Low:rpm) ☐ Other
☐ Engine stall	 Soon after starting After accelerator pedal depressed After accelerator pedal released During A/C ON Shifting from N to D-range Other
□ Others	 □ Poor driving (Surge) □ Knocking □ Poor fuel economy □ Back fire □ After fire □ Other

3. ENVIRONMENT

Problem frequency	Constant Sometimes () Once only Other	
Weather	□ Fine □ Cloudy □ Rainy □ Snowy □ Other	
Outdoor temperature	Approx°C/°F	
Place	□ Highway □ Suburbs □ Inner City □ Uphill □ Downhill □ Downhill □ Rough road □ Other	
Engine temperature	□ Cold □ Warming up □ After warming up □ Any temperature	
Engine operation Image: Starting in the starting intersection in the starting intersection in the starting intersection intersecti		

4. MIL/DTC

MIL (Malfunction Indicator Lamp)		□ Remains ON □ Sometimes lights up □ Does not light	
DTO	Normal check (Pre-check)	□ Normal □ DTC () □ Freeze Frame Data	
DTC	Check mode	□ Normal □ DTC () □ Freeze Frame Data	

5. ECM/PCM INFORMATION

ECM/PCM Part No.	
ROM ID	

SCMFL6150L

General Information

Basic Inspection Procedure

Measuring Condition Of Electronic Parts' Resistance

The measured resistance at high temperature after vehicle running may be high or low. So all resistance must be measured at ambient temperature $(20^{\circ}C, 68^{\circ}F)$, unless stated otherwise.

MOTICE

The measured resistance in except for ambient temperature ($20^{\circ}C$, $68^{\circ}F$) is reference value.

Intermittent Problem Inspection Procedure

Sometimes the most difficult case in troubleshooting is when a problem symptom occurs but does not occur again during testing. An example would be if a problem appears only when the vehicle is cold but has not appeared when warm. In this case, the technician should thoroughly make out a "CUSTOMER PROBLEM ANALYSIS SHEET" and recreate (simulate) the environment and condition which occurred when the vehicle was having the issue.

- 1. Clear Diagnostic Trouble Code (DTC).
- Inspect connector connection, and check terminal for poor connections, loose wires, bent, broken or corroded pins, and then verify that the connectors are always securely fastened.

BFGE321A

Slightly shake the connector and wiring harness vertically and horizontally.

- 4. Repair or replace the component that has a problem.
- 5. Verify that the problem has disappeared with the road test.
- SIMULATING VIBRATION
- a. Sensors and Actuators

: Slightly vibrate sensors, actuators or relays with finger.

WARNING

Strong vibration may break sensors, actuators or relays

b. Connectors and Harness

: Lightly shake the connector and wiring harness vertically and then horizontally.

- SIMULATING HEAT
- a. Heat components suspected of causing the malfunction with a hair dryer or other heat source.

WARNING

- DO NOT heat components to the point where they may be damaged.
- DO NOT heat the ECM directly.
- SIMULATING WATER SPRINKLING
- a. Sprinkle water onto vehicle to simulate a rainy day or a high humidity condition.

WARNING

DO NOT sprinkle water directly into the engine compartment or electronic components.

- SIMULATING ELECTRICAL LOAD
- a. Turn on all electrical systems to simulate excessive electrical loads (Radios, fans, lights, rear window defogger, etc.).

FLA-9

Fuel System

021 62 99 92 92

FLA-10

Connector Inspection Procedure

- 1. Handling of Connector
 - a. Never pull on the wiring harness when disconnecting connectors.

BFGE015F

b. When removing the connector with a lock, press or pull locking lever.

BFGE015G

c. Listen for a click when locking connectors. This sound indicates that they are securely locked.

BFGE015H

d. When a tester is used to check for continuity, or to measure voltage, always insert tester probe from wire harness side.

BFGE015I

021 62 99 92 92

FLA-11

General Information

e. Check waterproof connector terminals from the connector side. Waterproof connectors cannot be accessed from harness side.

BFGE015J

WNOTICE

- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead.
- 2. Checking Point for Connector
 - a. While the connector is connected:
 Hold the connector, check connecting condition and locking efficiency.
 - b. When the connector is disconnected:

Check missed terminal, crimped terminal or broken core wire by slightly pulling the wire harness.

Visually check for rust, contamination, deformation and bend.

c. Check terminal tightening condition:

Insert a spare male terminal into a female terminal, and then check terminal tightening conditions.

d. Pull lightly on individual wires to ensure that each wire is secured in the terminal.

BFGE015K

- 3. Repair Method of Connector Terminal
 - a. Clean the contact points using air gun and/or shop rag.

MOTICE

Never use sand paper when polishing the contact points, otherwise the contact point may be damaged.

b. In case of abnormal contact pressure, replace the female terminal.

Wire Harness Inspection Procedure

- 1. Before removing the wire harness, check the wire harness position and crimping in order to restore it correctly.
- Check whether the wire harness is twisted, pulled or loosened.
- 3. Check whether the temperature of the wire harness is abnormally high.
- 4. Check whether the wire harness is rotating, moving or vibrating against the sharp edge of a part.
- 5. Check the connection between the wire harness and any installed part.
- 6. If the covering of wire harness is damaged; secure, repair or replace the harness.

Fuel System

021 62 99 92 92

FLA-12

Electrical Circuit Inspection Procedure

Check Open Circuit

- 1. Procedures for Open Circuit
 - Continuity Check
 - Voltage Check

If an open circuit occurs (as seen in [FIG. 1]), it can be found by performing Step 2 (Continuity Check Method) or Step 3 (Voltage Check Method) as shown below.

FIG 1

2. Continuity Check Method

When measuring for resistance, lightly shake the wire harness above and below or from side to side.

BEGE501A

Specification (Resistance) 1Ω or less → Normal Circuit 1^{MΩ} or Higher → Open Circuit

a. Disconnect connectors (A), (C) and measure resistance between connector (A) and (C) as shown in [FIG. 2].

In [FIG.2.] the measured resistance of line 1 and 2 is higher than $1^{M\Omega}$ and below 1 Ω respectively. Specifically the open circuit is line 1 (Line 2 is normal). To find exact break point, check sub line of line 1 as described in next step.

FIG 2

BFGE501B

b. Disconnect connector (B), and measure for resistance between connector (C) and (B1) and between (B2) and (A) as shown in [FIG. 3].

In this case the measured resistance between connector (C) and (B1) is higher than $1^{M\Omega}$ and the open circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

BFGE501C

- 3. Voltage Check Method
 - a. With each connector still connected, measure the voltage between the chassis ground and terminal 1 of each connectors (A), (B) and (C) as shown in [FIG. 4].

General Information

The measured voltage of each connector is 5V, 5V and 0V respectively. So the open circuit is between connector (C) and (B).

BFGE501D

Check Short Circuit

1. Test Method for Short to Ground Circuit

Continuity Check with Chassis Ground

If short to ground circuit occurs as shown in [FIG. 5], the broken point can be found by performing Step 2 (Continuity Check Method with Chassis Ground) as shown below.

FIG 5

امانه دیجیتال تعمیرکاران خودرو در ایران

BFGE501E

2. Continuity Check Method (with Chassis Ground)

Lightly shake the wire harness above and below, or from side to side when measuring the resistance.

Specification (Resistance) 1Ω or less \rightarrow Short to Ground Circuit

<u>1MΩ or Higher</u> \rightarrow Normal Circuit

a. Disconnect connectors (A), (C) and measure for resistance between connector (A) and Chassis Ground as shown in [FIG. 6].

The measured resistance of line 1 and 2 in this example is below 1 Ω and higher than 1M Ω respectively. Specifically the short to ground circuit is line 1 (Line 2 is normal). To find exact broken point, check the sub line of line 1 as described in the following step.

b. Disconnect connector (B), and measure the resistance between connector (A) and chassis ground, and between (B1) and chassis ground as shown in [FIG. 7].

The measured resistance between connector (B1) and chassis ground is 1Ω or less. The short to ground circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

BFGE501G

WWW.DIGITALKHODRO.COM

021 62 99 92 92

FLA-14

Fuel System

Symptom Troubleshooting Guide Chart

Main Symptom	Diagnostic Procedure	Also Check For
Unable to start (Engine does not turn over)	 Test the battery Test the starter Inhibitor switch (A/T) or clutch start switch (M/T) 	
Unable to start (Incomplete combusti- on)	 Test the battery Check the fuel pressure Check the ignition circuit Troubleshooting the immobilizer system (In case of immobilizer lamp flashing) 	 DTC Low compression Intake air leaks Slipped or broken timing belt Contaminated fuel
Difficult to start	 Test the battery Check the fuel pressure Check the ECT sensor and circuit (Check DTC) Check the ignition circuit 	 DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Poor idling (Rough, unstable or in- correct Idle)	 Check the fuel pressure Check the Injector Check the long term fuel trim and short term fuel trim (Refer to CUSTOMER DATASTREAM) Check the idle speed control circuit (Check DTC) Inspect and test the Throttle Body Check the ECT sensor and circuit (Check DTC) 	 DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Engine stall	 Test the Battery Check the fuel pressure Check the idle speed control circuit (Check DTC) Check the ignition circuit Check the CKPS Circuit (Check DTC) 	 DTC Intake air leaks Contaminated fuel Weak ignition spark
Poor driving (Surge)	 Check the fuel pressure Inspect and test Throttle Body Check the ignition circuit Check the ECT Sensor and Circuit (Check DTC) Test the exhaust system for a possible restriction Check the long term fuel trim and short term fuel trim (Refer to CUSTOMER DATASTREAM) 	 DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Knocking	 Check the fuel pressure Inspect the engine coolant Inspect the radiator and the electric cooling fan Check the spark plugs 	DTCContaminated fuel
Poor fuel economy	 Check customer's driving habits Is A/C on full time or the defroster mode on? Are tires at correct pressure? Is excessively heavy load being carried? Is acceleration too much, too often? Check the fuel pressure Check the injector Test the exhaust system for a possible restriction Check the ECT sensor and circuit 	 DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark

FLA-15

General Information

Main Symptom	Diagnostic Procedure	Also Check For
Hard to refuel (Overflow during refue- ling)	 Test the canister close valve Inspect the fuel filler hose/pipe Pinched, kinked or blocked? Filler hose is torn Inspect the fuel tank vapor vent hose between the EV-AP. canister and air filter Check the EVAP. canister 	 Malfunctioning gas station fillin- g nozzle (If this problem occurs at a specific gas station during refueling)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Fuel System

FLA-16

Engine Control System

Components Location

- 1. ECM (Engine Control Module)
- 2. Manifold Absolute Pressure Sensor (MAPS)
- 3. Intake Air Temperature Sensor (IATS)
- 4. Engine Coolant Temperature Sensor (ECTS)
- 5. Throttle Position Sensor (TPS)
- 6. Crankshaft Position Sensor (CKPS)
- 7. Camshaft Position Sensor (CMPS)
- 8. Knock Sensor (KS)
- 9. Heated Oxygen Sensor (HO2S) [Bank 1/Sensor 1]
- 10. Heated Oxygen Sensor (HO2S) [Bank 1/Sensor 2]
- 11. CVVT Oil Temperature Sensor (OTS)

- 12. A/C Pressure Transducer (APT)
- 13. Injector
- 14. Idle Speed Control Actuator (ISCA)
- 15. Purge Control Solenoid Valve (PCSV)
- 16. CVVT Oil Control Valve (OCV)
- 17. Ignition Coil
- 18. Main Relay
- 19. Fuel Pump Relay
- 20. Data Link Connector (DLC)
- 21. Multi-Purpose Connecto

SEDF17005L

Engine Control System

FLA-17

FLA-18

Fuel System

18. Main Relay

Engine Control System

WWW.DIGITALKHODRO.COM

حيجيتال خورو

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FLA-20

Fuel System

Description

If the Gasoline Engine Control system components (sensors, ECM, injector, etc.) fail, interruption to the fuel supply or failure to supply the proper amount of fuel for various engine operating conditions will result. The following situations may be encountered.

- 1. Engine is hard to start or does not start at all.
- 2. Unstable idle.
- 3. Poor driveability

If any of the above conditions are noted, first perform a routine diagnosis that includes basic engine checks (ignition system malfunction, incorrect engine adjustment, etc.). Then, inspect the Gasoline Engine Control system components with the HI-SCAN (Pro).

- Before removing or installing any part, read the diagnostic trouble codes and then disconnect the battery negative (-) terminal.
- Before disconnecting the cable from battery terminal, turn the ignition switch to OFF. Removal or connection of the battery cable during engine operation or while the ignition switch is ON could cause damage to the ECM.
- The control harnesses between the ECM and heated oxygen sensor are shielded with the shielded ground wires to the body in order to prevent the influence of ignition noises and radio interference. When the shielded wire is faulty, the control harness must be replaced.
- When checking the generator for the charging state, do not disconnect the battery '+' terminal to prevent the ECM from damage due to the voltage.
- When charging the battery with the external charger, disconnect the vehicle side battery terminals to prevent damage to the ECM.

Malfunction Indicator Lamp (MIL) [EOBD]

A malfunction indicator lamp illuminates to notify the driver that there is a problem with the vehicle. However, the MIL will go off automatically after 3 subsequent sequential driving cycles without the same malfunction. Immediately after the ignition switch is turned on (ON position - do not start), the MIL will illuminate continuously to indicate that the MIL operates normally.

Faults with the following items will illuminate the MIL.

- Catalyst
- Fuel system
- Mass Air Flow Sensor (MAFS)
- Intake Air Temperature Sensor (IATS)
- Engine Coolant Temperature Sensor (ECTS)
- Throttle Position Sensor (TPS)
- Upstream Oxygen Sensor
- Upstream Oxygen Sensor Heater
- Downstream Oxygen Sensor
- Downstream Oxygen Sensor Heater
- Injector
- Misfire
- Crankshaft Position Sensor (CKPS)
- Camshaft Position Sensor (CMPS)
- Evaporative Emission Control System
- Vehicle Speed Sensor (VSS)
- Idle Speed Control Actuator (ISCA)
- Power Supply
- ECM/ PCM
- MT/AT Encoding
- Acceleration Sensor
- MIL-on Request Signal
- Power Stage

Refer to "Inspection CHART FOR DIAGNOSTIC TROUBLE CODES (DTC)" for more information.

FLA-21

Engine Control System

[NON-EOBD]

A malfunction indicator lamp illuminates to notify the driver that there is a problem with the vehicle. However, the MIL will go off automatically after 3 subsequent sequential driving cycles without the same malfunction. Immediately after the ignition switch is turned on (ON position - do not start), the MIL will illuminate continuously to indicate that the MIL operates normally.

Faults with the following items will illuminate the MIL

- Heated oxygen sensor (HO2S)
- Mass Air Flow sensor (MAFS)
- Throttle position sensor (TPS)
- Engine coolant temperature sensor (ECTS)
- Idle speed control actuator (ISCA)
- Injectors
- ECM

Refer to "Inspection CHART FOR DIAGNOSTIC TROUBLE CODES (DTC)" for more information.

[Inspection]

- 1. After turning ON the ignition key, ensure that the light illuminates for about 5 seconds and then goes out.
- 2. If the light does not illuminate, check for an open circuit in the harness, a blown fuse or a blown bulb.

Self-Diagnosis

The ECM monitors the input/output signals (some signals at all times and the others under specified conditions). When the ECM detects an irregularity, it records the diagnostic trouble code, and outputs the signal to the Data Link connector. The diagnosis results can be read with the MIL or HI-SCAN (Pro). Diagnostic Trouble Codes (DTC) will remain in the ECM as long as battery power is maintained. The diagnostic trouble codes will, however, be erased when the battery terminal or ECM connector is disconnected, or by the HI-SCAN (Pro).

WNOTICE

If a sensor connector is disconnected with the ignition switch turned on, the diagnostic trouble code (DTC) is recorded. In this case, disconnect the battery negative terminal (-) for 15 seconds or more, and the diagnosis memory will be erased.

LGIF601Q

021 62 99 92 92

021 62 99 92 92

FLA-22

- 1. When the same malfunction is detected and maintained during two sequential driving cycles, the MIL will automatically illuminate.
- 2. The MIL will go off automatically if no fault is detected after 3 sequential driving cycles.
- A Diagnostic Trouble Code(DTC) is recorded in ECM memory when a malfunction is detected after two sequential driving cycles. The MIL will illuminate when the malfunction is detected on the second driving cycle.

If a misfire is detected, a DTC will be recorded, and the MIL will illuminate, immediately after a fault is first detected.

4. A Diagnostic Trouble Code(DTC) will automatically erase from ECM memory if the same malfunction is not detected for 40 driving cycles.

MOTICE

- A "warm-up cycle" means sufficient vehicle operation such that the coolant temperature has risen by at least 40 degrees Fahrenheit from engine starting and reaches a minimum temperature of 160 degress Fahrenheit.
- A "driving cycle" consists of engine startup, vehicle operation beyond the beginning of closed loop operation.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Fuel System

Engine Control System

FLA-23

Engine Control Module (ECM)

Engine Control Module (ECM)

1. HARNESS CONNECTOR

CONNECTOR [CBG-K]

SHDF16115L

2. TERMINAL FUNCTION

Connector [CBG-K]

PinNo.	Description	Connected to
1	Power Ground	Chassis Ground
2	Battery voltage supply after ignition switch	Ignition Switch
3	Power Ground	Chassis Ground
4	Battery voltage supply after main relay	Main Relay
5	ECM Ground	Chassis Ground
حدهد)	Battery Power	Battery
7	Ignition Coil (Cylinder #1,4) control output	Ignition Coil (Cylinder #1,4)
8)):	یاماله دیجیتان تعمیر کاران خود (Shield	Ignition Coil
9	Sensor ground	Manifold Absolute Pressure Sensor (MAPS)
10	Manifold Absolute Pressure Sensor signal input	Manifold Absolute Pressure Sensor (MAPS)
11	-	
12	Ground	Immobilizer Control Module
13	A/C Pressure Transducer signal input	A/C Pressure Transducer (APT)
14	Sensor ground	Engine Coolant Temperature Sensor (ECTS)
15	Engine Coolant Temperature Sensor signal input	Engine Coolant Temperature Sensor (ECTS)
16	Sensor ground	Heated Oxygen Sensor (Sensor 1)
17	Heated Oxygen Sensor (Sensor 1) signal input	Heated Oxygen Sensor (Sensor 1)
18	Intake Air Temperature Sensor signal input	Intake Air Temperature Sensor (IATS)
19	-	
20	-	
21	Sensor ground	Knock Sensor (KS)
22	Knock Sensor signal input	Knock Sensor (KS)
23	Sensor power (+5V)	Throttle Position Sensor (TPS)

FLA-24

Fuel System

PinNo.	Description	Connected to
24	-	
25	Injector (Cylinder #1) control output	Injector (Cylinder #1)
26	Injector (Cylinder #3) control output	Injector (Cylinder #3)
27	Injector (Cylinder #4) control output	Injector (Cylinder #4)
28	Injector (Cylinder #2) control output	Injector (Cylinder #2)
29	Ignition Coil (Cylinder #2,3) control output	Ignition Coil (Cylinder #2,3)
30	-	
31	-	
32	-	
33	-	
34	-	
35	-	
36	-	
37	Sensor ground	CVVT Oil Temperature Sensor (OTS)
38	Heated Oxygen Sensor (Sensor 2) signal input	Heated Oxygen Sensor (Sensor 2)
39	Sensor ground	Heated Oxygen Sensor (Sensor 2)
40	CVVT Oil Temperature Sensor signal input	CVVT Oil Temperature Sensor (OTS)
(41)	Throttle Position Sensor signal input	Throttle Position Sensor (TPS)
42	Sensor ground	Throttle Position Sensor (TPS)
43)) .	سامانه دیجیتال تعمیرکاران خودرو در ا	اولین،
44	-	
45	-	
46	-	
47	Sensor power (+5V)	A/C Pressure Transducer (APT)
48	Sensor power (+5V)	Manifold Absolute Pressure Sensor (MAPS)
49	-	
50	-	
51	-	
52	-	
53	Vehicle speed signal input	ABS/ESP Control Module [With ABS/ESP]
54	-	
55	Wheel Speed Sensor [A] signal input	Wheel Speed Sensor (WSS)[Without ABS/ESP]
56	Wheel Speed Sensor [B] signal input	Wheel Speed Sensor (WSS)[Without ABS/ESP]
57	Sensor ground	A/C Pressure Transducer (APT)
58	-	

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Engine Control System

FLA-25

PinNo.	Description	Connected to
59	-	
60	A/C switch "ON" signal input	A/C Switch
61	-	
62	A/C thermal switch signal input	A/C Thermal Switch
63	Fuel consumption signal output	Trip Computer
64	Main Relay control output	Main Relay
65	Cooling Fan Relay [Low] control output	Cooling Fan Relay [Low]
66	CVVT Oil Control Valve control output	CVVT Oil Control Valve (OCV)
67	Purge Control Solenoid Valve control output	Purge Control Solenoid Valve (PCSV)
68	-	
69	Immobilizer lamp control output	Immobilizer Lamp
70	Fuel Pump Relay control output	Fuel Pump Relay
71	-	
72	-	
73	Battery voltage supply after main relay	Main Relay
74	Alternator load signal input	Alternator
75	Immobilizer communication line	Immobilizer Control Module
حدود) 76	Diagnosis Data Line (K-Line)	Data Link Connector (DLC), Multi-Purpose Check C- onnector
77	LAN [HIGH] - العمير كاران - التعمير كاران	Other control module
78	CAN [LOW]	Other control module
79	Sensor ground	Camshaft Position Sensor (CMPS)
80	Camshaft Position Sensor signal input	Camshaft Position Sensor (CMPS)
81	Sensor ground	Crankshaft Position Sensor (CKPS)
82	Crankshaft Position Sensor signal input	Crankshaft Position Sensor (CKPS)
83	-	
84	Clutch Switch signal input	Clutch Switch
85	-	
86	Engine speed signal output	Cluster (Tachometer)
87	A/C Compressor Relay control output	A/C Compressor Relay
88	Cooling Fan Relay [High] control output	Cooling Fan Relay [High]
89	Idle Speed Control Actuator [OPEN] control output	Idle Speed Control Actuator (ISCA)
90	Idle Speed Control Actuator [CLOSE] control output	Idle Speed Control Actuator (ISCA)
91	-	
92	Malfunction Indicator Lamp (MIL) control output	Cluster (Malfunction Indicator Lamp)

021 62 99 92 92

FLA-26

Fuel System

PinNo.	Description	Connected to
	Heated Oxygen Sensor (Sensor 1) Heater control ou- tput	
94	Heated Oxygen Sensor (Sensor 2) Heater control ou- tput	Heated Oxygen Sensor (Sensor 2)

Engine Control System

3. TERMINAL INPUT/OUTPUT SIGNAL

Connector [CBG-K]

Pin No.	Description	Condition	Туре	Level	Test Result
1	Power Ground	Idle	DC	Max. 50mV	
2	Battery voltage supply after igni-	IG OFF	DC	Max. 1.0V	1.18mV
Z	tion switch	IG ON		Battery Voltage	12.7V
3	Power Ground	Idle	DC	Max. 50mV	-4.37mV
4	Battery voltage supply after mai-	IG OFF	DC	Max. 1.0V	-5.1mV
4	n relay	IG ON	DC	Battery Voltage	12.3V
5	ECM Ground	Idle	DC	Max. 50mV	10.1mV
6	Battery Power	Always	DC	Battery Voltage	12.2V
7	Ignition Coil (Cylinder #1,4) con- trol output	امالم	Dulas	1st Voltage: 300 ~ 400V	372V
7		Idle	Pulse	ON Voltage: Max. 2.0V	1.6V
8	Shield	Idle	DC	Max. 50mV	18.3mV
9	Sensor ground	Idle	DC	Max. 50mV	18.7mV
10	Manifold Absolute Pressure Se-	IG ON		3.9 ~ 4.1V	4.09V
10 nsor signal input	Idle	DC	9.8 ~ 1.6V	1.44V	
(1922	و سامانه (مسئولیت م	جيتال خودر	شرکت د	0	
12	Ground	Idle	DC	Max. 50mV	
13	A/C Pressure Transducer signal input	Idle	DC	0.4 ~ 4.6V	A/C OF <mark>F:1.18</mark> A/C ON:1.48V
14	Sensor ground	Idle	DC	Max. 50mV	13.0mV
15	Engine Coolant Temperature S- ensor signal input	ldle	DC	0.5 ~ 4.5V	1.84V
16	Sensor ground	Idle	DC	Max. 50mV	
	Heated Oxygen Sensor (Sensor	.		Rich: 0.6 \sim 1.0V	
17	1) signal input	Racing	Analog	Lean: Max. 0.4V	
18	Intake Air Temperature Sensor signal input	ldle	Analog	$0 \sim 5.0 V$	3.63V
19	-				
20	-				
21	Sensor ground	ldle	DC	Max. 50mV	
00	Kaask Osassasimati's f	Knocking	Variable Freque-		
22	Knock Sensor signal input	Normal	ncy		
		IG OFF	5.0	Max. 0.5V	0V
23	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V	5.03V

WWW.DIGITALKHODRO.COM

FLA-27

021 62 99 92 92

FLA-28

Fuel System

Pin No.	Description	Condition	Туре	Level	Test Result
24	-				
				Hi: Battery Voltage	14.4V
25	25 Injector (Cylinder #1) control ou- tput	Idle	DC	Lo: Max. 1.0V	280mV
				Vpeak: Max. 80V	48.8V
				Hi: Battery Voltage	14.2V
26	Injector (Cylinder #3) control ou- tput	Idle	DC	Lo: Max. 1.0V	240mV
				Vpeak: Max. 80V	49.0V
				Hi: Battery Voltage	14.4V
27	Injector (Cylinder #4) control ou- tput	Idle	DC	Lo: Max. 1.0V	280mV
	iput			Vpeak: Max. 80V	48.8V
				Hi: Battery Voltage	14.2V
28	Injector (Cylinder #2) control ou- tput	Idle	DC	Lo: Max. 1.0V	240mV
	iput			Vpeak: Max. 80V	49.0V
	Ignition Coil (Cylinder #1,4) con-	Idla		1st Voltage: 300 ~ 400V	376V
29	29 trol output	Pulse	ON Voltage: Max. 2.0V	1.36V	
30			N		
31	و ساماده (میشونیت م	بجيتان حودر	سرحت د	0	
32	المحمد بكابا أحمد بمحت	مانا مربحيا ال		0	
33	ومسيركون حودرو در		او چې سه	0	
34	-				
35	-				
36	-				
37	Sensor ground	Idle	DC	Max. 50mV	17.3mV
20	Heated Oxygen Sensor (Sensor	Decing	Angler	Rich: 0.6 ~ 1.0V	640mV
38	2) signal input	Racing	Analog	Lean: Max. 0.4V	22mV
39	Sensor ground	ldle	DC	Max. 50mV	3.14mV
40	CVVT Oil Temperature Sensor signal input	Idle	Analog	$0.5 \sim 4.5 V$	950mV
	Throttle Position Sensor signal i-	C.T	. .	$0.25 \sim 0.9 V$	307mV
41	nput	W.O.T	Analog	Min. 4.0V	4.28V
42	Sensor ground	Idle	DC	Max. 50mV	13.6mV
43	-				
44	-				
45	-				

Engine Control System

FLA-29

Pin No.	Description	Condition	Туре	Level	Test Result
46	-				
47		IG OFF	DC	Max. 0.5V	2.61mV
47	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V	5.04V
40		IG OFF	DC	Max. 0.5V	3.16mV
48	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V	5.06V
49	-				
50	-				
51	-				
52	-				
52	Vahiala analad aignal input	Vahiala Dun	Dulaa	Hi: Min. 4.5V	13.0V
53	Vehicle speed signal input	Vehicle Run	Pulse	Lo: Max. 0.5V	-200mV
54	-				
				15Hz: Min. 0.13Vp- p	
55	Wheel Speed Sensor [A] signal	Vehicle Run (30 km/h)	SINE Wave	1,000Hz: Min 0.2V- pp	
				Overall: Max. 250 Vpp	
حدود)	و سامانه (مسئولیت م	بجيتال خودر	شرکت دا	15Hz: Min. 0.13Vp- p	
56	Wheel Speed Sensor [B] signal input	Vehicle Run (30 km/h)	SINE Wave	1,000Hz: Min 0.2V- pp	
				Overall: Max. 250 Vpp	
57	Sensor ground	Idle	DC	Max. 50mV	10mV
58	-				
59	-				
60	A/C quitab "ONI" giarget inget	A/C S/W OFF	50	Max. 1.0V	0mV
60	A/C switch "ON" signal input	A/C S/W ON	DC	Battery Voltage	12.8V
61	-				
60	A/O the armed equitable size of insert	A/C S/W OFF	50	Max. 1.0V	0mV
62	A/C thermal switch signal input	A/C S/W ON	DC	Battery Voltage	12.8V
62			Dulas	Hi: Battery Voltage	13.8V
63	Fuel consumption signal output	Idle	Pulse	Lo: Max. 0.5V	0.1V
64	Main Bolov control output	Relay OFF		Battery Voltage	12.9V
64	Main Relay control output	Relay ON	DC	Max. 1.0V	0.88V

FLA-30

021 62 99 92 92

Fuel System

Pin No.	Description	Condition	Туре	Level	Test Result
6E	Cooling Fan Relay [Low] control	Relay OFF	DC	Battery Voltage	12.9V
65	output	Relay ON	DC	Max. 1.0V	30mV
00	CVVT Oil Control Valve control	المالم	Dulas	Battery Voltage	14.8V
66	output	Idle	Pulse	Max. 1.0V	100mV
67	Purge Control Solenoid Valve c-	Active	Dulaa	Hi: Battery Voltage	14.2V
67	ontrol output	Inactive	Pulse	Lo: Max. 1.0V	100mV
68	-				
<u> </u>		Lamp OFF	DO	Battery Voltage	
69	Immobilizer lamp control output	Lamp ON	DC	Max. 2.0V	
70	East Dama Datas social social to the	Relay OFF	60	Battery Voltage	13V
70	Fuel Pump Relay control output	Relay ON	DC	Max. 1.0V	100mV
71	-				
72	-				
70	Battery voltage supply after mai-	IG OFF	60	Max. 1.0V	-5.1mV
73	n relay	IG ON	DC	Battery Voltage	12.3V
2				Hi: Battery Voltage	14V
74	Alternator load signal input	Idle	Pulse	Lo: Max. 1.5V	10mV
حدود)	و سامانه (مسئولیت م	When communi-	شرکت دا	Hi: Min. 8.5V	
75	Immobilizer communication line	cating after IG ON	Pulse	Lo: Max. 3.5V	
		When transmitti-	ng Pulse	Hi: Min. Vbatt × 80 %	12.2V
70		ng		Lo: Max. Vbatt × 2 0%	260mV
76	Diagnosis Data Line (K-Line)			Hi: Min. Vbatt × 70 %	12.2V
		When receiving		Lo: Max. Vbatt × 3 0%	860mV
77		RECESSIVE	Dulas	2.0 ~ 3.0V	2.55V
77	CAN [HIGH]	DOMINANT	Pulse	2.75 ~ 4.5V	3.57V
70		RECESSIVE	Dulaa	2.0 ~ 3.0V	2.55V
78	CAN [LOW]	DOMINANT	Pulse	$0.5 \sim 2.25 V$	1.44V
79	Sensor ground	ldle	DC	Max. 50mV	10mV
00	Camshaft Position Sensor signal	المالم	Dula -	Hi: Vcc	5.0V
80	input	Idle	Pulse	Lo: Max. 0.5V	0.2V
81	Sensor ground	Idle	DC	Max. 50mV	10mV

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Engine Control System

FLA-31

Pin No.	Description	Condition	Туре	Level	Test Result
00	Crankshaft Position Sensor sig-	Idle	Pulse	Hi: Vcc	5.0V
82	nal input	Idle		Lo: Max. 0.5V	40mV
83	-				
0.4	Clutch Quitch signal input	Release	DO	Max. 0.5V	
84	Clutch Switch signal input	Push	DC	Battery Voltage	
85	-				
	86 Engine aspeed signal output			Hi: Battery Voltage	14.0V
86		Idle	Pulse	Lo: Max. 0.5V	100mV
			Freq.: 20 ~ 26Hz	21.8Hz	
07	87 A/C Compressor Relay control output	Relay OFF	DC	Battery Voltage	14.1V
07		Relay ON	DC	Max. 1.0V	0.1V
88	Cooling Fan Relay [High] control	Relay OFF	DC	Battery Voltage	14.1V
00	output	Relay ON		Max. 1.0V	320mV
20	Idle Speed Control Actuator [O-	Idle	Pulse	Hi: Battery Voltage	14.6V
89	PEN] control output	Idle	Puise	Lo: Max. 1.0V	192mV
00	Idle Speed Control Actuator [CL-	Idle		Hi: Battery Voltage	14.9V
90	OSE] control output	Idle	Pulse	Lo: Max. 1.0V	248mV
91	و سامانه (مسئولیت م	بجيتال خودر	شرکت دا	0	
92	Malfunction Indicator Lamp (MIL	Lamp OFF	DC	Battery Voltage	13V
بران) تعمير کاران control output (Lamp ON	اولين سا	Max. 1.0V	50mV
93	Heated Oxygen Sensor (Sensor	Engine Run	Pulse	Hi: Battery Voltage	14V
30	1) Heater control output			Lo: Max. 1.0V	0.3V
94	Heated Oxygen Sensor (Sensor	Engine Run	Pulse	Hi: Battery Voltage	14V
54	2) Heater control output		Fuise	Lo: Max. 1.0V	0.3V

FLA-32

Circuit Diagram

Fuel System

ECM

SEDF17002L

021 62 99 92 92

WWW.DIGITALKHODRO.COM

021 62 99 92 92

021 62 99 92 92

FLA-33

ECM

Engine Control System

MAPS K9 - Sensor ground × K10 - MAPS signal input K48 - Sensor power (+5V) K18 - IATS signal input ECTS K15 - ECTS signal input 2 Cluster K14 - Sensor ground CMPS After Main Relay 2 Ο K80 - CMPS signal input K79 - Sensor ground CKPS After Main Relay 2 K82 - CKPS signal input K81 - Sensor ground KS K22 - Knock Sensor signal input Е Ę 2 ł K21 - Sensor ground - 0-------TPS ۰ K23 - Sensor power (+5V) K41 - TPS signal input K42 - Sensor ground HO2S (B1/S1) After Main Relay K93 - HO2S (Sensor 1) Heater control output w K17 - HO2S (Sensor 1) signal input K16 - Sensor ground HO2S (B1/S2) 3 After Main Relay 4 K94 - HO2S (Sensor 2) Heater control output ൝ 2 K38 - HO2S (Sensor 2) signal input / 1 K39 - Sensor ground APT K57 - Sensor ground З K47 - Sensor power (+5V) R 2 K13 - APT signal input OTS K37 - Sensor ground 2 K40 - OTS signal input

SEDF17003L

WWW.DIGITALKHODRO.COM

021 62 99 92 92

FLA-34

Fuel System

ECM

		ECM	
INJECTOR #1		K25 - Injector (Cylinder #1) control output	
	fter Main Relay	_	
INJECTOR #2 1		K28 - Injector (Cylinder #2) control output	
	fter Main Relay		
INJECTOR #3 1		K26 - Injector (Cylinder #3) control output	
	fter Main Relay		
		K27 - Injector (Cylinder #4) control output	
	After Main Relay		
		K89 - ISCA [OPEN] control output	
		_	
X (III)	After Main Relay		
		K90 - ISCA [CLOSE] control output	
		K67 - Purge Control Solenoid Valve control output	
	ter Main Relay		
	اولين سامانه ديجيتا	K66 - CVVT Oil Control Valve control output	
	ter Main Relay	0	

SHDF16118L

FLA-35

021 62 99 92 92

Engine Control System

	ECM
WITHOUT ABS/ESP WSS 1 2 WITH ABS/ESP ABS/ESP CONTROL MODULE -	K56 - WSS [B] signal input K55 - WSS [A] signal input
	K86 - Engine speed signal output K63 - Fuel consumption signal output K74 - Alternator load signal input K88 - Cooling Fan Relay [High] control output K77 - CAN [HiGH] K78 - CAN [LOW] K86 - A/C thermal switch signal input K88 - Couling Fan Relay [Low] control output K78 - CAN [LOW] K84 - Clutch Switch "ON" signal input K84 - Clutch Switch signal input K76 - Diagnosis Data Line (K-Line)

SEDF17004L

Fuel System

021 62 99 92 92

FLA-36

ECM Problem Inspection Procedure

 TEST ECM GROUND CIRCUIT: Measure resistance between ECM and chassis ground using the backside of ECM harness connector as ECM side check point. If the problem is found, repair it.

Specification (Resistance): 1Ω or less

- 2. TEST ECM CONNECTOR: Disconnect the ECM connector and visually check the ground terminals on ECM side and harness side for bent pins or poor contact pressure. If the problem is found, repair it.
- 3. If problem is not found in Step 1 and 2, the ECM could be faulty. If so, replace the ECM with a new one, and then check the vehicle again. If the vehicle operates normally then the problem was likely with the ECM.
- RE-TEST THE ORIGINAL ECM : Install the original ECM (may be broken) into a known-good vehicle and check the vehicle. If the problem occurs again, replace the original ECM with a new one. If problem does not occur, this is intermittent problem (Refer to INTERMITTENT PROBLEM PROCEDURE in BASIC Inspection PROCEDURE).

Replacement

- 1. Turn ignition switch off.
- 2. Disconnect the battery (-) cable from the battery.
- 3. Disconnect the ECM connector(s) (A).
- 4. Unscrew the ECM mounting bolts (B) and remove the ECM from the air cleaner assembly.

SHDF16500L

5. Install a new ECM.

ECM mounting bolts: 9.8 \sim 11.8 N·m (1.0 \sim 1.2 kgf·m, 7.2 \sim 8.7 lbf·ft)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Engine Control System

Manifold Absolute Pressure Sensor (MAPS)

Inspection

Function and operation priciple

Manifold Absolute Pressure Sensor (MAPS) is speed-density type sensor and is installed on the surge tank. This MAPS senses absolute pressure in surge tank and transfers this analog signal proportional to the pressure to the ECM. The ECM calculates the intake air quantity and engine speed based on this signal. This MAPS consists of piezo-electric element and hybrid IC that amplifies the element output signal. The element is silicon diaphragm type and adapts pressure sensitive variable resistor effect of semi-conductor. 100% vacuum and the manifold pressure applies to both sides of it respectively. That is, this sensor outputs the silicon variation proportional to pressure change by voltage.

LGLG002A

Pressure(kPa)	Output Voltage (V
20.0	0.79
46.66	1.84
101.32	4.0

FLA-38

Fuel System

Circuit Diagram

 $0.8 \simeq 1.6$

Idle
Intake Air Temperature Sensor (IATS)

Inspection

Function And Operation Priciple

Intake Air Temperature Sensor (IATS) is installed inside the Manifold Absolute Pressure Sensor (MAPS) and detects the intake air temperature. To calculate precise air quantity, correction of the air temperature is needed because air density varies according to the temperature. So the ECM uses not only MAPS signal but also IATS signal. This sensor has a Negative Temperature Coefficient (NTC) and its resistance is in inverse proportion to the temperature.

Specification

Temperature [℃(°F)]	Resistance(^k Ω)
-40(-40)	40.93 ~ 48.35
-30(-22)	23.43 ~ 27.34
-20(-4)	13.89 ~ 16.03
-10(14)	8.50 ~ 9.71
0(32)	$5.38 \simeq 6.09$
10(50)	3.48 ~ 3.90
20(68)	2.31 ~ 2.57
25(77)	1.90 ~ 2.10
30(86)	1.56 ~ 1.74
40(104)	1.08 ~ 1.21
60(140)	$0.54 \sim 0.62$
80(176)	0.29 ~ 0.34

SHDF16121L

FLA-39

FLA-40

Fuel System

Circuit Diagram

Engine Coolant Temperature Sensor (ECTS)

Inspection

Function And Operation Priciple

Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5 V in the PCM is supplied to the ECTS via a resistor in the PCM.That is, the resistor in the PCM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the PCM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

بیتال خودر و سامانه (مسئولیت مح

SHDF16104L

EGRE241A

Specification

Temperature [℃(°F)]	Resistance(^k Ω)
-40(-40)	48.14
-20(-4)	14.13 ~ 16.83
0(32)	5.79
20(68)	2.31 ~ 2.59
40(104)	1.15
60(140)	0.59
80(176)	0.32

FLA-41

WWW.DIGITALKHODRO.COM

021 62 99 92 92

FLA-42

Circuit Diagram

Fuel System

- 4. After immersing the thermistor of the sensor into engine coolant, measure resistance between ECTS terminals 1 and 3.
- 5. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

Throttle Position Sensor (TPS)

Inspection

Function And Operation Principle

The Throttle Position Sensor (TPS) is mounted on the throttle body and detects the opening angle of the throttle plate. The TPS has a variable resistor (potentiometer) whose characteristic is the resistance changing according to the throttle angle. During acceleration, the TPS resistance between the reference 5V and the signal terminal decreases and output voltage increases; during deceleration, the TPS resistance increases and TPS output voltage decreases. The ECM supplies a reference 5V to the TPS and the output voltage increases directly with the opening of the throttle valve. The TPS output voltage will vary from 0.2~0.8V at closed throttle to 4.3~4.8V at wide-open throttle. The ECM determines operating conditions such as idle (closed throttle), part load, acceleration/deceleration, and wide-open throttle from the TPS. Also The ECM uses the Manifold Absolute Pressure Sensor (MAPS) signal along with the TPS signal to adjust fuel injection duration and ignition timing.

SHDF16105L

Specification

Throttle Angle	Output Voltage (V)
یتال خودرو سامانه c.) سئولیت محدود)	0.25 ~ 0.9
W.O.T	Min. 4.0V
له دیجیتال تعمیرکارز، خودرو در ایران Items	Specification
Sensor Resistance (^k _Ω)	1.6 ~ 2.4 ^k Ω at 20 ℃(68° ^F)

021 62 99 92 92

Fuel System

FLA-44

Circuit Diagram

WWW.DIGITALKHODRO.COM

Specification: Refer to SPECIFICATION.

Camshaft Position Sensor (CMPS)

Inspection

Function And Operation Priciple

Camshaft Position Sensor (CMPS) is a hall sensor and detects the camshaft position by using a hall element. It is related with Crankshaft Position Sensor (CKPS) and detects the piston position of each cylinder which the CKPS can't detect. The CMPS are installed on engine head cover and uses a target wheel installed on the camshaft. This sensor has a hall-effect IC which output voltage changes when magnetic field is made on the IC with current flow.

SEDF17001L

Fig.1) The square wave signal should be smooth and without any distortion.

Fig.2,3)The CMPS falling(rising) edge is coincided with 3~5 tooth of the CKP from one longer signal(missing tooth)

LFLG156A

021 62 99 92 92

FLA-46

Fuel System

Circuit Diagram

Crankshaft Position Sensor (CKPS)

Inspection

Function And Operation Priciple

Crankshaft Position Sensor (CKPS) detects the crankshaft position and is one of the most important sensors of the engine control system. If there is no CKPS signal input, fuel is not supplied and the main relay does not operate. That is, vehicle can't run without CKPS signal. This sensor is installed on transaxle housing and generates alternating current by magnetic flux field which is made by the sensor and the target wheel when engine runs. The target wheel consists of 58 slots and 2 missing slots on 360 CA (Crank Angle).

Waveform

Fig.1) The square wave signal should be smooth and without any distortion.

Fig.2,3)The CMPS falling(rising) edge is coincided with 3~5 tooth of the CKP from one longer signal(missing tooth)

LFLG156A

SHDF16106L

FLA-48

Fuel System

Circuit Diagram

Heated Oxygen Sensor (HO2S)

Inspection

Function And Operation Priciple

Heated Oxygen Sensor (HO2S) consists of zirconium and alumina and is installed on upstream and downstream of the Manifold Catalyst Converter (MCC). After it compares oxygen consistency of the atmosphere with the exhaust gas, it transfers the oxygen consistency of the exhaust gas to the ECM. When A/F ratio is rich or lean, it generates approximately 1V or 0V respectively. In order that this sensor normally operates, the temperature of the sensor tip is higher than 370 $^{\circ}$ C (698 $^{\circ}$ F). So it has a heater which is controlled by the ECM duty signal. When the exhaust gas temperature is lower than the specified value, the heater warms the sensor tip.

Element Tip

Shield

FLA-49

WWW.DIGITALKHODRO.COM

FLA-50

Fuel System

Output Voltage (V)
0.6 ~ 1.0
0.1 ~ 0.4
Specification
Approx. 9.0Ω at 20 °C (68°F)

Circuit Diagram

SHDF16600L

Component Inspection

- 1. Disconnet the HO2S connector.
- 2. Measure resistance between HO2S heater terminals 3 and 4.
- 3. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

WWW.DIGITALKHODRO.COM

Knock Sensor (KS)

Inspection

Function And Operation Priciple

Knocking is a phenomenon characterized by undesirable vibration and noise and can cause engine damage. Knock Sensor (KS) senses engine knocking and the cylinder block. When knocking occurs, the vibration from the cylinder block is applied as pressure to the piezoelectric element. At this time, this sensor transfers the voltage signal higher than the specified value to the ECM and the ECM retards the ignition timing. If the knocking disappears after retarding the ignition timing, the ECM will advance the ignition timing. This sequential control can improve engine power, torque and fuel economy.

Specification 950 ~ 1,350

4.87

SHDF16108L

Engine Control Oystem

Housing Nut Connector Conn

Specification

Item

Capacitance (pF) Resistance (MΩ)

WWW.DIGITALKHODRO.COM

EGRF252A

021 62 99 92 92

FLA-52

Fuel System

Waveform

GEN	ERA)	L	SEN	SOF		2.	9	V				1.0	l mS	
11 N	: -5	42.	9 n	Ļ						MA	X:	32	5.7	'nΨ
3														
ŧ														
				-	-				-					-
سريخ	-tal grad	بن		مرزمه	مہ	-	-	مرتب	-		<u> </u>	مرغر		
		•		•	•	•		-	•		•		•	•
4		•						-						
						•		-	1	-			•	
8		•		•	•	•	•	•	•		·	•	·	•
	HOL	D	$\mathbf{Z0}$	MC	C	URS	11	R-8	3T	ME	INU		ELP	·

The knock sensor is installed at cycliner block to detect the vibration effectively during engine running. The above waveform shows the signal waveform of knock sensor when knock dosen't happen. Generally, knock signal has more noise than other sensor.

SHDF16273L

021 62 99 92 92

Engine Control System

Injector

Inspection

Function And Operation Priciple

Based on information from various sensors, the ECM measures the fuel injection amount. The fuel injector is a solenoid-operated valve and the fuel injection amount is controlled by length of time that the fuel injector is held open. The ECM controls each injector by grounding the control circuit. When the ECM energizes the injector by grounding the control circuit, the circuit voltage should be low (theoretically 0V) and the fuel is injected. When the ECM de-energizes the injector by opening control circuit, the fuel injector is closed and circuit voltage should momentarily peak.

Specification

ltem	Specification
Coil Resistance (Ω)	13.8 \sim 15.2 Ω at 20 $^\circ C$ (68 $^\circ F$)

WWW.DIGITALKHODRO.COM

FLA-53

FLA-54

Fuel System

021 62 99 92 92

Circuit Diagram

[Circuit Diagram]		[Connectior	n Information]			
Injector #1 (CBG24-1)	ECM (CBG-K)	Injector #1 (CE	G24-1)			
	25- Injector #1 Control	Terminal	Connected to	Function		
Main Relay		1	Main Relay	Power		
Injector #2 (CBG24-2)	28- Injector #2 Control	2	ECM CBG-K (25)	Injector Control		
$\left[X + t \sqrt{3} \right]_{2}$	-128- Injector #2 Control	Injector #2 (CE	G24-2)			
Injector #3 (CBG24-3) Main Relay		Terminal	Connected to	Function		
	26- Injector #3 Control	1	ECM CBG-K (28)	Injector Control		
		2	Main Relay	Power		
☐		Injector #3 (CBG24-3)				
	27- Injector #4 Control	Terminal	Connected to	Function		
		1	ECM CBG-K (26)	Injector Control		
Main Relay		2	Main Relay	Power		
		Injector #4 (CE	3G24-4)			
		Terminal	Connected to	Function		
		1	ECM CBG-K (27)	Injector Control		
		2	Main Relay	Power		
[Harness Connector]		26 25 24 23 22 21 20 1	584838281807978777675 36261605958575655543 140393837363534332231 91817161514131211109 GBG-K ECM	74 73 52 51 6 5 4 3 2 1		

Component Inspection

- 1. Turn ignition switch OFF.
- 2. Disconnect injector connector.
- 3. Measure resistance between injector terminals 1 and 2.
- 4. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

SHDF16254L

Idle Speed Control Actuator (ISCA)

Inspection

Function And Operation Principle

The Idle Speed Control Actuator (ISCA) is installed on the throttle body and controls the intake airflow that is bypassed around the throttle plate to keep constant engine speed when the throttle valve is closed. The function of the ISCA is to maintain idle speed according to various engine loads and conditions, and also to provide additional air during starting. The ISCA consists of an opening coil, a closing coil, and a permanent magnet. Based on information from various sensors, the ECM controls both coils by grounding their control circuits. According to the control signals from the ECM, the valve rotor rotates to control the by pass airflow into the engine.

MAPS & IATS

SHDF16103L

Specification

ITems	Specification
Closing Coil Resistance (Ω)	14.6 ∼ 16.2 at 20°C (68°F)
Opening Coil Resistance (Ω)	11.1 ~ 12.7 at 20 [°] ℃ (68°F)
Duty (%)	Air Flow Rate (^{m³} /h)
ستال خودر و سامانه (1 سئوليت محدود)	1.0 ~ 2.3
35	7.5 ~ 12.7
نه دیجیتال تعمیرکا 79 خودرو در ایران	43.0 ~ 55.0
96	63.0 ~ 71.0

FLA-55

FLA-56

Fuel System

Circuit Diagram

- Measure resistance between ISCA terminals 2 and 3 [Closing Coil].
- 5. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

CVVT Oil Control Valve (OCV)

Inspection

Function And Operation Priciple

The Continuously Variable Valve Timing (CVVT) system controls the amount of valve overlap by varying the amount of oil flow into an assembly mounted on the intake camshaft through ECM control of an oil control valve. An Oil Temperature Sensor (OTS) is used to allow ECM monitoring of engine oil temperature. As oil is directed into the chambers of the CVVT assembly, the cam phase is changed to suit various performance and emissions requirements..

- 1. When camshaft rotates engine rotation-wise: Intake-Advance / Exhaust-Retard
- 2. When camshaft rotates counter engine rotation-wise: Intake- Retard / Exhaust- Advance

SHDF16104L

Function

Control

Power

Specification

Item	Specification
Coil Resistance (Ω)	$6.9 \sim 7.9 \Omega$ at $20^\circ C$ ($68^\circ F$)

[Circuit Diagram] [Connection Information] CCV(CBG05) 2 Main Relay [Connected to 1 ECM(CBG-K) 2 Main Relay

[Harness Connector]

Circuit Diagram

Component Inspection

- 1. Turn ignition switch OFF.
- 2. Disconnect OCV connector.
- 3. Measure resistance between OCV terminals 1 and 2.
- 4. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

FLA-57

021 62 99 92 92

WWW.DIGITALKHODRO.COM

FLA-58

021 62 99 92 92

Fuel System

Purge Control Solenoid Valve (PCSV)

Inspection

Function And Operation Priciple

Purge Control Solenoid Valve (PCSV) is installed on the surge tank and controls the passage between the canister and the intake manifold. It is a solenoid valve and is open when the PCM grounds the valve control line. When the passage is open (PCSV ON), fuel vapors stored in the canister is transferred to the intake manifold.

Specification

Item	Specification
Coil Resistance (Ω)	16.0Ω at 20 °C (68°F)

[Harness Connector]

SHDF16287L

Component Inspection

- 1. Turn ignition switch OFF.
- 2. Disconnect PCSV connector.
- 3. Measure resistance between PCSV terminals 1 and 2.
- 4. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

WWW.DIGITALKHODRO.COM

CVVT Oil Temperature Sensor (OTS)

Inspection

Function And Operation Priciple

MAPS & IATS

The CVVT Oil Temperature Sensor (OTS) is a negative coefficient thermistor used by the PCM tl measure engine oil temperature for the purpose of adjusting CVVT calculations.

ISCA

SHDF16103L

Specification	
---------------	--

متال خودرو [(۴°)℃ Temperature (°C	Resistance (^k ^Ω)
-40(-40)	52.15
له دیجیتال تعمیر (4-)20-خودرو در ایران	م الم الم الم الم الولين سام 16.52 الولين سام
0(32)	6.0
20(68)	2.45
40(104)	1.11
60(140)	0.54
80(176)	0.29

EGRF241A

Terminal

Body

Thermister

Packing (Rubber)

. . .

021 62 99 92 92

FLA-60

Fuel System

Circuit Diagram

5. Check that the resistance is within the specification.

Specification: Refer to SPECIFICATION.

Fuel Delivery System

Fuel Delivery System Component Location

- 1. Fuel Tank
- 2. Fuel Pump (Including Fuel Filter)
- 3. Fuel Pressure Regulator
- 4. Separator
- 5. Fuel Filler Pipe
- 6. Leveling Pipe

- 7. Canister
- 8. Tube (Canister ↔ Intake Manifold)
- 9. Hose (Canister ↔ Fuel Tank Air Filter)
- 10. Hose (Canister ↔ Separator)
- 11. Hose (Separator ↔ Fuel Tank)

SFDFL8007L

021 62 99 92 92

FLA-61

FLA-62

Fuel Pressure Test

1. PREPARING

- 1. Remove the rear seat cushion (Refer to "SEAT" in BD group).
- 2. Open the service cover (A).

2. RELEASE THE INTERNAL PRESSURE

- 1. Disconnect the fuel pump connector (A).
- 2. Start the engine and wait until fuel in fuel line is exhausted.
- 3. After the engine stalls, turn the ignition switch to OFF position and disconnect the negative (-) terminal from the battery.

NOTE

Be sure to reduce the fuel pressure before disconnecting the fuel feed hose, otherwise fuel will spill out.

3. INSTALL THE SPECIAL SERVICE TOOL (SST) FOR MEASURING THE FUEL PRESSURE

1. Disconnect the fuel feed hose from the delivery pipe.

CAUTION

Cover the hose connection with a shop towel to prevent splashing of fuel caused by residual pressure in the fuel line.

- 2. Install the Fuel Pressure Gage Adapter (09353-38000) between the delivery pipe and the fuel feed hose.
- 3. Connect the Fuel Pressure Gage Connector (09353-24000) to the Fuel Pressure Gage Adapter (09353-38000).
- 4. Connect the Fuel Pressure Gage and Hose (09353-24100) to Fuel Pressure Gage Connector (09353-24000).
- 5. Connect the fuel feed hose to the Fuel Pressure Gage Adapter (09353-38000).

SFDFL8008L

021 62 99 92 92

Fuel System

WWW.DIGITALKHODRO.COM

Fuel Delivery System

FLA-63

4. INSPECT FUEL LEAKAGE ON CONNECTION

- 1. Connect the battery negative (-) terminal.
- 2. Apply battery voltage to the fuel pump terminal and activate the fuel pump. With fuel pressure applied,
- check that there is no fuel leakage from the fuel pressure gauge or connection part.

5. FUEL PRESURE TEST

- 1. Diconnect the negative (-) terminal from the battery.
- 2. Connect the fuel pump connector.
- 3. Connect the battery negative (-) terminal.
- 4. Start the engine and measure the fuel pressure at idle.

Standard Value: 338 ~ 348 kpa (3.45 ~ 3.55 kgf/cm², 49.0 ~ 50.5 psi)

If the measured fuel pressure differs from the standard value, perform the necessary repairs using the table below.

Condition	Probable Cause	Suspected Area
	Clogged fuel filter	Fuel filter
Fuel Pressure too low	Fuel leak on the fuel-pressure regulator that is assembled on fuel pump because of poor seating of the fuel-pressure regulator.	Fuel Pressure Regulator
Fuel Pressure too High	Sticking fuel pressure regulator	Fuel Pressure Regulator

5. Stop the engine and check for a change in the fuel pressure gauge reading.

After engine stops, the gage reading should hold for about 5 minutes

Observing the declination of the fuel pressure when the gage reading drops and perform the necessary repairs using the table below.

Condition	Probable Cause	Supected Area	
Fuel pressure drops slowly after engine is stopped	Injector leak	Injector	
Fuel pressure drops immediately after engine is stopped	The check valve within the fuel pump is open	Fuel Pump	

SMGFL6906N

Fuel System

FLA-64

6. RELEASE THE INTERNAL PRESSURE

- 1. Disconnect the fuel pump connector (A).
- 2. Start the engine and wait until fuel in fuel line is exhausted.
- 3. After the engine stalls, turn the ignition switch to OFF position and diconnect the negative (-) terminal from the battery.

Be sure to reduce the fuel pressure before disconnecting the fuel feed hose, otherwise fuel will spill out.

7. REMOVE THE SPECIAL SERVICE TOOL (SST) AND CONNECT THE FUEL LINE

- 1. Disconnect the Fuel Pressure Gage and Hose (09353-24100) from the Fuel Pressure Gage Connector (09353-24000).
- 2. Disconnect the Fuel Pressure Gage Connector (09353-24000) from the Fuel Pressure Gage Adapter (09353-38000).
- 3. Disconnect the fuel feed hose from the Fuel Pressure Gage Adapter (09353-38000).
- 4. Disconnect the Fuel Pressure Gage Adapter (09353-38000) from the delivery pipe.

CAUTION

Cover the hose connection with a shop towel to prevent splashing of fuel caused by residual pressure in the fuel line.

5. Conenct the fuel feed hose to the delivery pipe.

8. INSPECT FUEL LEAKAGE ON CONNECTION

- 1. Connect the battery negative (-) terminal.
- 2. Apply battery voltage to the fuel pump terminal and activate the fuel pump. With fuel pressure applied, check that there is no fuel leakage from the fuel pressure gauge or connection part.
- 3. If the vehicle is normal, connect the fuel pump connector.

SFDFL8009L

Fuel Delivery System

Fuel Pump

Removal (Including Fuel Filter And Fuel Pressure Regulator)

1. Preparation

A

exhausted.

position.

1) Fold or remove the rear seat cushion (Refer to "SEAT" in BD group).

3) Disconnect the fuel pump connector (A).

4) Start the engine and wait until fuel in fuel line is

5) After engine stalls, turn the ignition switch to OFF

SHDF16125L

(d) 🕲

SFDFL8010L

2) Open the service cover (A).

SFDFL8011L

3. Unscrew the fuel pump installation bolts (C) and remove the fuel pump assembly.

SFDFL8012L

Installation

Installation is reverse of removal.

Fuel Pump installation bolts : 3.9 \sim 5.9 N·m (0.4 \sim 0.6 kgf·m, 2.9 \sim 4.3 lbf·ft)

When installing a pump module, be careful not to get the seal-ring entangled.

FLA-65

FLA-66

Fuel Tank

Removal (Including Fuel Filter And Fuel Pressure Regulator)

1. Preparation

A

Ø

- 1) Remove the rear seat cushion (Refer to "SEAT" in BD group).
- 2) Open the service cover (A).

SFDFL8013L

- 3. Lift the vehicle and support the fuel tank with a jack.
- 4. Disconnect the fuel filler hose (A), the leveling hose (B) and the vapor hose (C).

SEDFL7007L

SFDFL8010L

4) Start the engine and wait until fuel in fuel line is exhausted.

(B)

5) After engine stalls, turn the ignition switch to OFF position.

WWW.DIGITALKHODRO.COM

Fuel System

FLA-67

021 62 99 92 92

Fuel Delivery System

5. Unscrew the fuel tank band mounting nuts(A) and remove the fuel tank(B).

Installation

Installation is reverse of removal.

SEDF37009L

اولین ساما<mark>نه دیجیتال تعمیرکاران خودرو در ایرا</mark>ن

Fuel System

021 62 99 92 92

FLA-68

Filler-Neck Assembly

Removal

 Disconnect the fuel filler hose (A), the leveling hose (B) and the vapor hose (C).

SEDFL7007L

2. Open the fuel filler door and unfasten the filler-neck assembly mounting screws (A).

SFDFL8014L

MOTICE

If the filler neck assembly can't be removed easily, remove it again after loosening the rear cross member mounting bolt partly (Refer to "REAR LOWER ARM" in SS group).

Installation

1. Installation is reverse of removal.

SFDFL8019L

3. Remove the rear-LH wheel, tire, and the inner wheel house.

Fuel Delivery System

Fuel Filter

Replacement

- 1. Remove the fuel pump (Refer to "FUEL PUMP" in this group).
- Disconnect the fuel pump & sender wiring connector (A) and remove the regulator cap (B).

 Separate the flange assembly (B) from the fuel pump & filter assembly after disengaging three fixing hooks (C) and the feed hose connector (D).

FLA-69